68 resultados para Non-constant coefficient diffusion equations
Resumo:
PURPOSE: To compare the apparent diffusion coefficient (ADC) values of malignant liver lesions on diffusion-weighted MRI (DWI) before and after successful radiofrequency ablation (RF ablation). MATERIALS AND METHODS: Thirty-two patients with 43 malignant liver lesions (23/20: metastases/hepatocellular carcinomas (HCC)) underwent liver MRI (3.0T) before (<1month) and after RF ablation (at 1, 3 and 6months) using T2-, gadolinium-enhanced T1- and DWI-weighted MR sequences. Jointly, two radiologists prospectively measured ADCs for each lesion by means of two different regions of interest (ROIs), first including the whole lesion and secondly the area with the visibly most restricted diffusion (MRDA) on ADC map. Changes of ADCs were evaluated with ANOVA and Dunnett tests. RESULTS: Thirty-one patients were successfully treated, while one patient was excluded due to focal recurrence. In metastases (n=22), the ADC in the whole lesion and in MRDA showed an up-and-down evolution. In HCC (n=20), the evolution of ADC was more complex, but with significantly higher values (p=0.013) at 1 and 6months after RF ablation. CONCLUSION: The ADC values of malignant liver lesions successfully treated by RF ablation show a predictable evolution and may help radiologists to monitor tumor response after treatment.
Resumo:
In this study we investigated the effect of medial temporal lobe epilepsy (MTLE) on the global characteristics of brain connectivity estimated by topological measures. We used DSI (Diffusion Spectrum Imaging) to construct a connectivity matrix where the nodes represents the anatomical ROIs and the edges are the connections between any pair of ROIs weighted by the mean GFA/FA values. A significant difference was found between the patient group vs control group in characteristic path length, clustering coefficient and small-worldness. This suggests that the MTLE network is less efficient compared to the network of the control group.
Resumo:
The clinical demand for a device to monitor Blood Pressure (BP) in ambulatory scenarios with minimal use of inflation cuffs is increasing. Based on the so-called Pulse Wave Velocity (PWV) principle, this paper introduces and evaluates a novel concept of BP monitor that can be fully integrated within a chest sensor. After a preliminary calibration, the sensor provides non-occlusive beat-by-beat estimations of Mean Arterial Pressure (MAP) by measuring the Pulse Transit Time (PTT) of arterial pressure pulses travelling from the ascending aorta towards the subcutaneous vasculature of the chest. In a cohort of 15 healthy male subjects, a total of 462 simultaneous readings consisting of reference MAP and chest PTT were acquired. Each subject was recorded at three different days: D, D+3 and D+14. Overall, the implemented protocol induced MAP values to range from 80 ± 6 mmHg in baseline, to 107 ± 9 mmHg during isometric handgrip maneuvers. Agreement between reference and chest-sensor MAP values was tested by using intraclass correlation coefficient (ICC = 0.78) and Bland-Altman analysis (mean error = 0.7 mmHg, standard deviation = 5.1 mmHg). The cumulative percentage of MAP values provided by the chest sensor falling within a range of ±5 mmHg compared to reference MAP readings was of 70%, within ±10 mmHg was of 91%, and within ±15mmHg was of 98%. These results point at the fact that the chest sensor complies with the British Hypertension Society (BHS) requirements of Grade A BP monitors, when applied to MAP readings. Grade A performance was maintained even two weeks after having performed the initial subject-dependent calibration. In conclusion, this paper introduces a sensor and a calibration strategy to perform MAP measurements at the chest. The encouraging performance of the presented technique paves the way towards an ambulatory-compliant, continuous and non-occlusive BP monitoring system.
Resumo:
Object The purpose of this study was to investigate whether diffusion tensor imaging (DTI) of the corticospinal tract (CST) is a reliable surrogate for intraoperative macrostimulation through the deep brain stimulation (DBS) leads. The authors hypothesized that the distance on MRI from the DBS lead to the CST as determined by DTI would correlate with intraoperative motor thresholds from macrostimulations through the same DBS lead. Methods The authors retrospectively reviewed pre- and postoperative MRI studies and intraoperative macrostimulation recordings in 17 patients with Parkinson disease (PD) treated by DBS stimulation. Preoperative DTI tractography of the CST was coregistered with postoperative MRI studies showing the position of the DBS leads. The shortest distance and the angle from each contact of each DBS lead to the CST was automatically calculated using software-based analysis. The distance measurements calculated for each contact were evaluated with respect to the intraoperative voltage thresholds that elicited a motor response at each contact. Results There was a nonsignificant trend for voltage thresholds to increase when the distances between the DBS leads and the CST increased. There was a significant correlation between the angle and the voltage, but the correlation was weak (coefficient of correlation [R] = 0.36). Conclusions Caution needs to be exercised when using DTI tractography information to guide DBS lead placement in patients with PD. Further studies are needed to compare DTI tractography measurements with other approaches such as microelectrode recordings and conventional intraoperative MRI-guided placement of DBS leads.
Resumo:
General Introduction This thesis can be divided into two main parts :the first one, corresponding to the first three chapters, studies Rules of Origin (RoOs) in Preferential Trade Agreements (PTAs); the second part -the fourth chapter- is concerned with Anti-Dumping (AD) measures. Despite wide-ranging preferential access granted to developing countries by industrial ones under North-South Trade Agreements -whether reciprocal, like the Europe Agreements (EAs) or NAFTA, or not, such as the GSP, AGOA, or EBA-, it has been claimed that the benefits from improved market access keep falling short of the full potential benefits. RoOs are largely regarded as a primary cause of the under-utilization of improved market access of PTAs. RoOs are the rules that determine the eligibility of goods to preferential treatment. Their economic justification is to prevent trade deflection, i.e. to prevent non-preferred exporters from using the tariff preferences. However, they are complex, cost raising and cumbersome, and can be manipulated by organised special interest groups. As a result, RoOs can restrain trade beyond what it is needed to prevent trade deflection and hence restrict market access in a statistically significant and quantitatively large proportion. Part l In order to further our understanding of the effects of RoOs in PTAs, the first chapter, written with Pr. Olivier Cadot, Celine Carrère and Pr. Jaime de Melo, describes and evaluates the RoOs governing EU and US PTAs. It draws on utilization-rate data for Mexican exports to the US in 2001 and on similar data for ACP exports to the EU in 2002. The paper makes two contributions. First, we construct an R-index of restrictiveness of RoOs along the lines first proposed by Estevadeordal (2000) for NAFTA, modifying it and extending it for the EU's single-list (SL). This synthetic R-index is then used to compare Roos under NAFTA and PANEURO. The two main findings of the chapter are as follows. First, it shows, in the case of PANEURO, that the R-index is useful to summarize how countries are differently affected by the same set of RoOs because of their different export baskets to the EU. Second, it is shown that the Rindex is a relatively reliable statistic in the sense that, subject to caveats, after controlling for the extent of tariff preference at the tariff-line level, it accounts for differences in utilization rates at the tariff line level. Finally, together with utilization rates, the index can be used to estimate total compliance costs of RoOs. The second chapter proposes a reform of preferential Roos with the aim of making them more transparent and less discriminatory. Such a reform would make preferential blocs more "cross-compatible" and would therefore facilitate cumulation. It would also contribute to move regionalism toward more openness and hence to make it more compatible with the multilateral trading system. It focuses on NAFTA, one of the most restrictive FTAs (see Estevadeordal and Suominen 2006), and proposes a way forward that is close in spirit to what the EU Commission is considering for the PANEURO system. In a nutshell, the idea is to replace the current array of RoOs by a single instrument- Maximum Foreign Content (MFC). An MFC is a conceptually clear and transparent instrument, like a tariff. Therefore changing all instruments into an MFC would bring improved transparency pretty much like the "tariffication" of NTBs. The methodology for this exercise is as follows: In step 1, I estimate the relationship between utilization rates, tariff preferences and RoOs. In step 2, I retrieve the estimates and invert the relationship to get a simulated MFC that gives, line by line, the same utilization rate as the old array of Roos. In step 3, I calculate the trade-weighted average of the simulated MFC across all lines to get an overall equivalent of the current system and explore the possibility of setting this unique instrument at a uniform rate across lines. This would have two advantages. First, like a uniform tariff, a uniform MFC would make it difficult for lobbies to manipulate the instrument at the margin. This argument is standard in the political-economy literature and has been used time and again in support of reductions in the variance of tariffs (together with standard welfare considerations). Second, uniformity across lines is the only way to eliminate the indirect source of discrimination alluded to earlier. Only if two countries face uniform RoOs and tariff preference will they face uniform incentives irrespective of their initial export structure. The result of this exercise is striking: the average simulated MFC is 25% of good value, a very low (i.e. restrictive) level, confirming Estevadeordal and Suominen's critical assessment of NAFTA's RoOs. Adopting a uniform MFC would imply a relaxation from the benchmark level for sectors like chemicals or textiles & apparel, and a stiffening for wood products, papers and base metals. Overall, however, the changes are not drastic, suggesting perhaps only moderate resistance to change from special interests. The third chapter of the thesis considers whether Europe Agreements of the EU, with the current sets of RoOs, could be the potential model for future EU-centered PTAs. First, I have studied and coded at the six-digit level of the Harmonised System (HS) .both the old RoOs -used before 1997- and the "Single list" Roos -used since 1997. Second, using a Constant Elasticity Transformation function where CEEC exporters smoothly mix sales between the EU and the rest of the world by comparing producer prices on each market, I have estimated the trade effects of the EU RoOs. The estimates suggest that much of the market access conferred by the EAs -outside sensitive sectors- was undone by the cost-raising effects of RoOs. The chapter also contains an analysis of the evolution of the CEECs' trade with the EU from post-communism to accession. Part II The last chapter of the thesis is concerned with anti-dumping, another trade-policy instrument having the effect of reducing market access. In 1995, the Uruguay Round introduced in the Anti-Dumping Agreement (ADA) a mandatory "sunset-review" clause (Article 11.3 ADA) under which anti-dumping measures should be reviewed no later than five years from their imposition and terminated unless there was a serious risk of resumption of injurious dumping. The last chapter, written with Pr. Olivier Cadot and Pr. Jaime de Melo, uses a new database on Anti-Dumping (AD) measures worldwide to assess whether the sunset-review agreement had any effect. The question we address is whether the WTO Agreement succeeded in imposing the discipline of a five-year cycle on AD measures and, ultimately, in curbing their length. Two methods are used; count data analysis and survival analysis. First, using Poisson and Negative Binomial regressions, the count of AD measures' revocations is regressed on (inter alia) the count of "initiations" lagged five years. The analysis yields a coefficient on measures' initiations lagged five years that is larger and more precisely estimated after the agreement than before, suggesting some effect. However the coefficient estimate is nowhere near the value that would give a one-for-one relationship between initiations and revocations after five years. We also find that (i) if the agreement affected EU AD practices, the effect went the wrong way, the five-year cycle being quantitatively weaker after the agreement than before; (ii) the agreement had no visible effect on the United States except for aone-time peak in 2000, suggesting a mopping-up of old cases. Second, the survival analysis of AD measures around the world suggests a shortening of their expected lifetime after the agreement, and this shortening effect (a downward shift in the survival function postagreement) was larger and more significant for measures targeted at WTO members than for those targeted at non-members (for which WTO disciplines do not bind), suggesting that compliance was de jure. A difference-in-differences Cox regression confirms this diagnosis: controlling for the countries imposing the measures, for the investigated countries and for the products' sector, we find a larger increase in the hazard rate of AD measures covered by the Agreement than for other measures.
Resumo:
Objectifs: Déterminer la fréquence et les facteurs prédictifs de l'effet T2 shine-through (T2st) dans l'hémangiome hépatique (HH). Matériels et méthodes: Entre janvier 2010 et novembre 2011, l'imagerie par résonance magnétique (IRM) du foie de 149 patients avec 400 HH a été revue rétrospectivement. Les caractéristiques lésionnelles : taille, localisation, signal et aspect en T1, T2 et diffusion, T2st, coefficient apparent de diffusion de l'HH et du foie (ADChh et ADCf) et type de rehaussement ont été évalués. Résultats: Le T2st était observé dans 53 % des HH. Sa présence était corrélée positivement avec la taille (p=0,046) et négativement avec ADChh et ADCf (p<0,0001, p=0,021). Le T2st était plus fréquent dans le lobe gauche vs droit (p=0,038), et dans les HH typiques (hypersignal T2 et rehaussement en mottes, p=0,0043). L'analyse multivariée retrouvait comme facteurs indépendants de la présence d'un T2st : ADChh et le type de rehaussement. Conclusion: Le T2st est fréquemment observé dans les HH et notamment les formes typiques. Sa présence ne remet pas en question le diagnostic dans les formes typiques.
Resumo:
The only currently available method to measure brain glycogen in vivo is 13C NMR spectroscopy. Incorporation of 13C-labeled glucose (Glc) is necessary to allow glycogen measurement, but might be affected by turnover changes. Our aim was to measure glycogen absolute concentration in the rat brain by eliminating label turnover as variable. The approach is based on establishing an increased, constant 13C isotopic enrichment (IE). 13C-Glc infusion is then performed at the IE of brain glycogen. As glycogen IE cannot be assessed in vivo, we validated that it can be inferred from that of N-acetyl-aspartate IE in vivo: After [1-13C]-Glc ingestion, glycogen IE was 2.2 +/- 0.1 fold that of N-acetyl-aspartate (n = 11, R(2) = 0.77). After subsequent Glc infusion, glycogen IE equaled brain Glc IE (n = 6, paired t-test, p = 0.37), implying isotopic steady-state achievement and complete turnover of the glycogen molecule. Glycogen concentration measured in vivo by 13C NMR (mean +/- SD: 5.8 +/- 0.7 micromol/g) was in excellent agreement with that in vitro (6.4 +/- 0.6 micromol/g, n = 5). When insulin was administered, the stability of glycogen concentration was analogous to previous biochemical measurements implying that glycogen turnover is activated by insulin. We conclude that the entire glycogen molecule is turned over and that insulin activates glycogen turnover.
Resumo:
An epidemic model is formulated by a reactionâeuro"diffusion system where the spatial pattern formation is driven by cross-diffusion. The reaction terms describe the local dynamics of susceptible and infected species, whereas the diffusion terms account for the spatial distribution dynamics. For both self-diffusion and cross-diffusion, nonlinear constitutive assumptions are suggested. To simulate the pattern formation two finite volume formulations are proposed, which employ a conservative and a non-conservative discretization, respectively. An efficient simulation is obtained by a fully adaptive multiresolution strategy. Numerical examples illustrate the impact of the cross-diffusion on the pattern formation.
Resumo:
Over the last 10 years, diffusion-weighted imaging (DWI) has become an important tool to investigate white matter (WM) anomalies in schizophrenia. Despite technological improvement and the exponential use of this technique, discrepancies remain and little is known about optimal parameters to apply for diffusion weighting during image acquisition. Specifically, high b-value diffusion-weighted imaging known to be more sensitive to slow diffusion is not widely used, even though subtle myelin alterations as thought to happen in schizophrenia are likely to affect slow-diffusing protons. Schizophrenia patients and healthy controls were scanned with a high b-value (4000s/mm(2)) protocol. Apparent diffusion coefficient (ADC) measures turned out to be very sensitive in detecting differences between schizophrenia patients and healthy volunteers even in a relatively small sample. We speculate that this is related to the sensitivity of high b-value imaging to the slow-diffusing compartment believed to reflect mainly the intra-axonal and myelin bound water pool. We also compared these results to a low b-value imaging experiment performed on the same population in the same scanning session. Even though the acquisition protocols are not strictly comparable, we noticed important differences in sensitivities in the favor of high b-value imaging, warranting further exploration.
Resumo:
Diffusion MRI is a well established imaging modality providing a powerful way to non-invasively probe the structure of the white matter. Despite the potential of the technique, the intrinsic long scan times of these sequences have hampered their use in clinical practice. For this reason, a wide variety of methods have been proposed to shorten acquisition times. [...] We here review a recent work where we propose to further exploit the versatility of compressed sensing and convex optimization with the aim to characterize the fiber orientation distribution sparsity more optimally. We re-formulate the spherical deconvolution problem as a constrained l0 minimization.
Resumo:
We evaluated the effectiveness of supplementation with high dose of oral vitamin D3 to correct vitamin D insufficiency. We have shown that one or two oral bolus of 300,000 IU of vitamin D3 can correct vitamin D insufficiency in 50% of patients and that the patients who benefited more from supplementation were those with the lowest baseline levels. INTRODUCTION: Adherence with daily oral supplements of vitamin D3 is suboptimal. We evaluated the effectiveness of a single high dose of oral vitamin D3 (300,000 IU) to correct vitamin D insufficiency in a rheumatologic population. METHODS: Over 1 month, 292 patients had levels of 25-OH vitamin D determined. Results were classified as: deficiency <10 ng/ml, insufficiency ≥10 to 30 ng/ml, and normal ≥30 ng/ml. We added a category using the IOM recommended cut-off of 20 ng/ml. Patients with deficient or normal levels were excluded, as well as patients already supplemented with vitamin D3. Selected patients (141) with vitamin D insufficiency (18.5 ng/ml (10.2-29.1) received a prescription for 300,000 IU of oral vitamin D3 and were asked to return after 3 (M3) and 6 months (M6). Patients still insufficient at M3 received a second prescription for 300,000 IU of oral vitamin D3. Relation between changes in 25-OH vitamin D between M3 and M0 and baseline values were assessed. RESULTS: Patients (124) had a blood test at M3. Two (2%) had deficiency (8.1 ng/ml (7.5-8.7)) and 50 (40%) normal results (36.7 ng/ml (30.5-5.5)). Seventy-two (58%) were insufficient (23.6 ng/ml (13.8-29.8)) and received a second prescription for 300,000 IU of oral vitamin D3. Of the 50/124 patients who had normal results at M3 and did not receive a second prescription, 36 (72%) had a test at M6. Seventeen (47%) had normal results (34.8 ng/ml (30.3-42.8)) and 19 (53%) were insufficient (25.6 ng/ml (15.2-29.9)). Of the 72/124 patients who receive a second prescription, 54 (75%) had a test at M6. Twenty-eight (52%) had insufficiency (23.2 ng/ml (12.8-28.7)) and 26 (48%) had normal results (33.8 ng/ml (30.0-43.7)). At M3, 84% patients achieved a 25-OH vitamin D level >20 ng/ml. The lowest the baseline value, the highest the change after 3 months (negative relation with a correlation coefficient r = -0.3, p = 0.0007). CONCLUSIONS: We have shown that one or two oral bolus of 300,000 IU of vitamin D3 can correct vitamin D insufficiency in 50% of patients.
Resumo:
Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders.
Resumo:
The objective of this study was to investigate whether it is possible to pool together diffusion spectrum imaging data from four different scanners, located at three different sites. Two of the scanners had identical configuration whereas two did not. To measure the variability, we extracted three scalar maps (ADC, FA and GFA) from the DSI and utilized a region and a tract-based analysis. Additionally, a phantom study was performed to rule out some potential factors arising from the scanner performance in case some systematic bias occurred in the subject study. This work was split into three experiments: intra-scanner reproducibility, reproducibility with twin-scanner settings and reproducibility with other configurations. Overall for the intra-scanner and twin-scanner experiments, the region-based analysis coefficient of variation (CV) was in a range of 1%-4.2% and below 3% for almost every bundle for the tract-based analysis. The uncinate fasciculus showed the worst reproducibility, especially for FA and GFA values (CV 3.7-6%). For the GFA and FA maps, an ICC value of 0.7 and above is observed in almost all the regions/tracts. Looking at the last experiment, it was found that there is a very high similarity of the outcomes from the two scanners with identical setting. However, this was not the case for the two other imagers. Given the fact that the overall variation in our study is low for the imagers with identical settings, our findings support the feasibility of cross-site pooling of DSI data from identical scanners.
Resumo:
There is growing interest in understanding the role of the non-injured contra-lateral hemisphere in stroke recovery. In the experimental field, histological evidence has been reported that structural changes occur in the contra-lateral connectivity and circuits during stroke recovery. In humans, some recent imaging studies indicated that contra-lateral sub-cortical pathways and functional and structural cortical networks are remodeling, after stroke. Structural changes in the contra-lateral networks, however, have never been correlated to clinical recovery in patients. To determine the importance of the contra-lateral structural changes in post-stroke recovery, we selected a population of patients with motor deficits after stroke affecting the motor cortex and/or sub-cortical motor white matter. We explored i) the presence of Generalized Fractional Anisotropy (GFA) changes indicating structural alterations in the motor network of patientsâeuro? contra-lateral hemisphere as well as their longitudinal evolution ii) the correlation of GFA changes with patientsâeuro? clinical scores, stroke size and demographics data iii) and a predictive model.
Resumo:
The rationale of this study was to investigate molecular flexibility and its influence on physicochemical properties with a view to uncovering additional information on the fuzzy concept of dynamic molecular structure. Indeed, it is now known that computed molecular interaction fields (MIFs) such as molecular electrostatic potentials (MEPs) and lipophilicity potentials (MLPs) are conformation-dependent, as are dipole moments. A database of 125 compounds was used whose conformational space was explored, while conformation-dependent parameters were computed for each non-redundant conformer found in the conformational space of the compounds. These parameters were the virtual log P (log P(MLP), calculated by a MLP approach), the apolar surface area (ASA), polar surface area (PSA), and solvent-accessible surface (SAS). For each compound, the range taken by each parameter (its property space) was divided by the number of rotors taken as an index of flexibility, yielding a parameter termed 'molecular sensitivity'. This parameter was poorly correlated with others (i.e., it contains novel information) and showed the compounds to fall into two broad classes. 'Sensitive' molecules are those whose computed property ranges are markedly sensitive to conformational effects, whereas 'insensitive' (in fact, less sensitive) molecules have property ranges which are comparatively less affected by conformational fluctuations. A pharmacokinetic application is presented.