68 resultados para Nitro-fatty acids
Resumo:
This study explores the potential use of stable carbon isotope ratios (delta C-13) of single fatty acids (FA) as tracers for the transformation of FA from diet to milk, with focus on the metabolic origin of c9,t11-18:2. For this purpose, dairy cows were fed diets based exclusively on C-3 and C-4 plants. The FA in milk and feed were fractionated by silver-ion thin-layer chromatography and analyzed for their delta C-13 values. Mean delta C-13 values of FA from C-3 milk were lower compared to those from C-4 milk (-30.1aEuro degrees vs. -24.9aEuro degrees, respectively). In both groups the most negative delta C-13 values of all FA analyzed were measured for c9,t11-18:2 (C-3 milk = -37.0 +/- A 2.7aEuro degrees; C-4 milk -31.4 +/- A 1.4aEuro degrees). Compared to the dietary precursors 18:2n-6 and 18:3n-3, no significant C-13-depletion was measured in t11-18:1. This suggests that the delta C-13-change in c9,t11-18:2 did not originate from the microbial biohydrogenation in the rumen, but most probably from endogenous desaturation of t11-18:1. It appears that the natural delta C-13 differences in some dietary FA are at least partly preserved in milk FA. Therefore, carbon isotope analyses of individual FA could be useful for studying metabolic transformation processes in ruminants.
Resumo:
Diets rich in omega-3s have been thought to prevent both obesity and osteoporosis. However, conflicting findings are reported, probably as a result of gene by nutritional interactions. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear receptor that improves insulin sensitivity but causes weight gain and bone loss. Fish oil is a natural agonist for PPARγ and thus may exert its actions through the PPARγ pathway. We examined the role of PPARγ in body composition changes induced by a fish or safflower oil diet using two strains of C57BL/6J (B6); i.e. B6.C3H-6T (6T) congenic mice created by backcrossing a small locus on Chr 6 from C3H carrying 'gain of function' polymorphisms in the Pparγ gene onto a B6 background, and C57BL/6J mice. After 9months of feeding both diets to female mice, body weight, percent fat and leptin levels were less in mice fed the fish oil vs those fed safflower oil, independent of genotype. At the skeletal level, fish oil preserved vertebral bone mineral density (BMD) and microstructure in B6 but not in 6T mice. Moreover, fish oil consumption was associated with an increase in bone marrow adiposity and a decrease in BMD, cortical thickness, ultimate force and plastic energy in femur of the 6T but not the B6 mice. These effects paralleled an increase in adipogenic inflammatory and resorption markers in 6T but not B6. Thus, compared to safflower oil, fish oil (high ratio omega-3/-6) prevents weight gain, bone loss, and changes in trabecular microarchitecture in the spine with age. These beneficial effects are absent in mice with polymorphisms in the Pparγ gene (6T), supporting the tenet that the actions of n-3 fatty acids on bone microstructure are likely to be genotype dependent. Thus caution must be used in interpreting dietary intervention trials with skeletal endpoints in mice and in humans.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that mediate the effects of fatty acids and their derivatives at the transcriptional level. These receptors stimulate transcription after activation by their cognate ligand and binding to the promoter of target genes. In this review, we discuss how fatty acids affect PPAR functions in the cell. We first describe the structural features of the ligand binding domains of PPARs, as defined by crystallographic analyses. We then present the ligand-binding characteristics of each of the three PPARs (alpha, beta/delta, gamma) and relate ligand activation to various cellular processes: (i) fatty acid catabolism and modulation of the inflammatory response for PPARalpha, (ii) embryo implantation, cell proliferation and apoptosis for PPARbeta, and (iii) adipocytic differentiation, monocytic differentiation and cell cycle withdrawal for PPARgamma. Finally, we present possible cross-talk between the PPAR pathway and different endocrine routes within the cell, including the thyroid hormone and retinoid pathways.
Resumo:
Endurance training improves exercise performance and insulin sensitivity, and these effects may be in part mediated by an enhanced fat oxidation. Since n-3 and n-9 unsaturated fatty acids may also increase fat oxidation, we hypothesised that a diet enriched in these fatty acids may enhance the effects of endurance training on exercise performance, insulin sensitivity and fat oxidation. To assess this hypothesis, sixteen normal-weight sedentary male subjects were randomly assigned to an isoenergetic diet enriched with fish and olive oils (unsaturated fatty acid group (UFA): 52 % carbohydrates, 34 % fat (12 % SFA, 12 % MUFA, 5 % PUFA), 14 % protein), or a control diet (control group (CON): 62 % carbohydrates, 24 % fat (12 % SFA, 6 % MUFA, 2 % PUFA), 14 % protein) and underwent a 10 d gradual endurance training protocol. Exercise performance was evaluated by measuring VO2max and the time to exhaustion during a cycling exercise at 80 % VO2max; glucose homeostasis was assessed after ingestion of a test meal. Fat oxidation was assessed by indirect calorimetry at rest and during an exercise at 50 % VO2max. Training significantly increased time to exhaustion, but not VO2max, and lowered incremental insulin area under the curve after the test meal, indicating improved insulin sensitivity. Those effects were, however, of similar magnitude in UFA and CON. Fat oxidation tended to increase in UFA, but not in CON. This difference was, however, not significant. It is concluded that a diet enriched with fish- and olive oil does not substantially enhance the effects of a short-term endurance training protocol in healthy young subjects.
Resumo:
RATIONALE: Although dietary fatty acids are a major fuel for the heart, little is known about the direct effects of dietary fatty acids on gene regulation in the intact heart. OBJECTIVE: To study the effect of dietary fatty acids on cardiac gene expression and explore the functional consequences. METHODS AND RESULTS: Oral administration of synthetic triglycerides composed of one single fatty acid altered cardiac expression of numerous genes, many of which are involved in the oxidative stress response. The gene most significantly and consistently upregulated by dietary fatty acids encoded Angiopoietin-like protein (Angptl)4, a circulating inhibitor of lipoprotein lipase expressed by cardiomyocytes. Induction of Angptl4 by the fatty acid linolenic acid was specifically abolished in peroxisome proliferator-activated receptor (PPAR)beta/delta(-/-) and not PPARalpha(-/-) mice and was blunted on siRNA-mediated PPARbeta/delta knockdown in cultured cardiomyocytes. Consistent with these data, linolenic acid stimulated binding of PPARbeta/delta but not PPARalpha to the Angptl4 gene. Upregulation of Angptl4 resulted in decreased cardiac uptake of plasma triglyceride-derived fatty acids and decreased fatty acid-induced oxidative stress and lipid peroxidation. In contrast, Angptl4 deletion led to enhanced oxidative stress in the heart, both after an acute oral fat load and after prolonged high fat feeding. CONCLUSIONS: Stimulation of cardiac Angptl4 gene expression by dietary fatty acids and via PPARbeta/delta is part of a feedback mechanism aimed at protecting the heart against lipid overload and consequently fatty acid-induced oxidative stress.
Resumo:
BACKGROUND: Data regarding immunomodulatory effects of parenteral n-3 fatty acids in sepsis are conflicting. In this study, the effect of administration of parenteral n-3 fatty acids on markers of brain injury, incidence of sepsis-associated delirium, and inflammatory mediators in septic patients was investigated. METHODS: Fifty patients with sepsis were randomized to receive either 2 ml/kg/day of a lipid emulsion containing highly refined fish oil (equivalent to n-3 fatty acids 0.12 mg/kg/day) during 7 days after admission to the intensive care unit or standard treatment. Markers of brain injury and inflammatory mediators were measured on days 1, 2, 3 and 7. Assessment for sepsis-associated delirium was performed daily. The primary outcome was the difference in S-100β from baseline to peak level between both the intervention and the control group, compared by t-test. Changes of all markers over time were explored in both groups, fitting a generalized estimating equations model. RESULTS: Mean difference in change of S-100β from baseline to peak level was 0.34 (95% CI: -0.18-0.85) between the intervention and control group, respectively (P = 0.19). We found no difference in plasma levels of S-100β, neuron-specific enolase, interleukin (IL)-6, IL-8, IL-10, and C-reactive protein between groups over time. Incidence of sepsis-associated delirium was 75% in the intervention and 71% in the control groups (risk difference 4%, 95% CI -24-31%, P = 0.796). CONCLUSION: Administration of n-3 fatty acids did not affect markers of brain injury, incidence of sepsis-associated delirium, and inflammatory mediators in septic patients.
Resumo:
Alterations in the hepatic lipid content (HLC) and fatty acid composition are associated with disruptions in whole body metabolism, both in humans and in rodent models, and can be non-invasively assessed by (1)H-MRS in vivo. We used (1)H-MRS to characterize the hepatic fatty-acyl chains of healthy mice and to follow changes caused by streptozotocin (STZ) injection. Using STEAM at 14.1 T with an ultra-short TE of 2.8 ms, confounding effects from T2 relaxation and J-coupling were avoided, allowing for accurate estimations of the contribution of unsaturated (UFA), saturated (SFA), mono-unsaturated (MUFA) and poly-unsaturated (PUFA) fatty-acyl chains, number of double bonds, PU bonds and mean chain length. Compared with in vivo (1) H-MRS, high resolution NMR performed in vitro in hepatic lipid extracts reported longer fatty-acyl chains (18 versus 15 carbons) with a lower contribution from UFA (61 ± 1% versus 80 ± 5%) but a higher number of PU bonds per UFA (1.39 ± 0.03 versus 0.58 ± 0.08), driven by the presence of membrane species in the extracts. STZ injection caused a decrease of HLC (from 1.7 ± 0.3% to 0.7 ± 0.1%), an increase in the contribution of SFA (from 21 ± 2% to 45 ± 6%) and a reduction of the mean length (from 15 to 13 carbons) of cytosolic fatty-acyl chains. In addition, SFAs were also likely to have increased in membrane lipids of STZ-induced diabetic mice, along with a decrease of the mean chain length. These studies show the applicability of (1)H-MRS in vivo to monitor changes in the composition of the hepatic fatty-acyl chains in mice even when they exhibit reduced HLC, pointing to the value of this methodology to evaluate lipid-lowering interventions in the scope of metabolic disorders.
Resumo:
BACKGROUND/AIMS: Fibroblast growth factor 21 (FGF21) is a key mediator of glucose and lipid metabolism. However, the beneficial effects of exogenous FGF21 administration are attenuated in obese animals and humans with elevated levels of circulating free fatty acids (FFA). METHODS: We investigated in vitro how FFA impact FGF21 effects on hepatic lipid metabolism. RESULTS: In the absence of FFA, FGF21 reduced lipogenesis and increased lipid oxidation in HepG2 cells. Inhibition of lipogenesis was associated with a down regulation of SREBP-1c, FAS and SCD1. The lipid-lowering effect was associated with AMPK and ACC phosphorylation, and up regulation of CPT-1α expression. Further, FGF21 treatment reduced TNFα gene expression, suggesting a beneficial action of FGF21 on inflammation. In contrast, the addition of FFA abolished the positive effects of FGF21 on lipid metabolism. CONCLUSION: In the absence of FFA, FGF21 improves lipid metabolism in HepG2 cells and reduces the inflammatory cytokine TNFα. However, under high levels of FFA, FGF21 action on lipid metabolism and TNFα gene expression is impaired. Therefore, FFA impair FGF21 action in HepG2 cells potentially through TNFα.
Resumo:
Polyhydroxyalkanoate (PHA) is a family of polymers composed primarily of R-3-hydroxyalkanoic acids. These polymers have properties of biodegradable thermoplastics and elastomers. Medium-chain-length PHAs (MCL-PHAs) are synthesized in bacteria by using intermediates of the beta-oxidation of alkanoic acids. To assess the feasibility of producing MCL-PHAs in plants, Arabidopsis thaliana was transformed with the PhaC1 synthase from Pseudomonas aeruginosa modified for peroxisome targeting by addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. Immunocytochemistry demonstrated that the modified PHA synthase was appropriately targeted to leaf-type peroxisomes in light-grown plants and glyoxysomes in dark-grown plants. Plants expressing the PHA synthase accumulated electron-lucent inclusions in the glyoxysomes and leaf-type peroxisomes, as well as in the vacuole. These inclusions were similar to bacterial PHA inclusions. Analysis of plant extracts by GC and mass spectrometry demonstrated the presence of MCL-PHA in transgenic plants to approximately 4 mg per g of dry weight. The plant PHA contained saturated and unsaturated 3-hydroxyalkanoic acids ranging from six to 16 carbons with 41% of the monomers being 3-hydroxyoctanoic acid and 3-hydroxyoctenoic acid. These results indicate that the beta-oxidation of plant fatty acids can generate a broad range of R-3-hydroxyacyl-CoA intermediates that can be used to synthesize MCL-PHAs.
Resumo:
Amino acids have been reported to increase endogenous glucose production in normal human subjects during hyperinsulinemia: however, controversy exists as to whether insulin-mediated glucose disposal is inhibited under these conditions. The effect of an amino acid infusion on glucose oxidation rate has so far not been determined. Substrate oxidation rates, endogenous glucose production, and [13C]glucose synthesis from [13C]bicarbonate were measured in six normal human subjects during sequential infusions of exogenous glucose and exogenous glucose with (n = 5) or without (n = 5) exogenous amino acids. Amino acids increased endogenous glucose production by 84% and [13C]glucose synthesis by 235%. Glucose oxidation estimated from indirect calorimetry decreased slightly after amino acids, but glucose oxidation estimated from [13C]glucose-13CO2 data was increased by 14%. It is concluded that gluconeogenesis is the major pathway of amino acid degradation. During amino acid administration, indirect calorimetry underestimates the true rate of glucose oxidation, whereas glucose oxidation calculated from the 13C enrichment of expired CO2 during [U-13C]glucose infusion does not. A slight stimulation of glucose oxidation during amino acid infusion, concomitant with an increased plasma insulin concentration, indicates that amino acids do not inhibit glucose oxidation.
Resumo:
Many organisms use fatty acid derivatives as biological regulators. In plants, for example, fatty acid-derived signals have established roles in the regulation of developmental and defense gene expression. Growing numbers of these compounds, mostly derived from fatty acid hydroperoxides, are being characterized. The model plant Arabidopsis thaliana is serving a vital role in the discovery of fatty acid-derived signal molecules and the genetic analysis of their synthesis and action. The Arabidopsis genome sequencing project, the availability of large numbers of mutants in fatty acid biosynthesis and signal transduction, as well as excellent pathosystems, make this plant a tremendously useful model for research in fatty acid signaling. This review summarizes recent progress in understanding fatty acid signaling in A. thaliana and highlights areas of research where progress is rapid. Particular attention is paid to the growing literature on the jasmonate family of regulators and their role in defense against insects and microbial pathogens.
Resumo:
Liver fatty-acid-binding protein (L-FABP) is a cytoplasmic polypeptide that binds with strong affinity especially to long-chain fatty acids (LCFAs). It is highly expressed in both the liver and small intestine, where it is thought to have an essential role in the control of the cellular fatty acid (FA) flux. Because expression of the gene encoding L-FABP is increased by both fibrate hypolipidaemic drugs and LCFAs, it seems to be under the control of transcription factors, termed peroxisome-proliferator-activated receptors (PPARs), activated by fibrate or FAs. However, the precise molecular mechanism by which these regulations take place remain to be fully substantiated. Using transfection assays, we found that the different PPAR subtypes (alpha, gamma and delta) are able to mediate the up-regulation by FAs of the gene encoding L-FABP in vitro. Through analysis of LCFA- and fibrate-mediated effects on L-FABP mRNA levels in wild-type and PPARalpha-null mice, we have found that PPARalpha in the intestine does not constitute a dominant regulator of L-FABP gene expression, in contrast with what is known in the liver. Only the PPARdelta/alpha agonist GW2433 is able to up-regulate the gene encoding L-FABP in the intestine of PPARalpha-null mice. These findings demonstrate that PPARdelta can act as a fibrate/FA-activated receptor in tissues in which it is highly expressed and that L-FABP is a PPARdelta target gene in the small intestine. We propose that PPARdelta contributes to metabolic adaptation of the small intestine to changes in the lipid content of the diet.
Resumo:
OBJECTIVES: Increasing evidence suggests that left ventricular remodeling is associated with a shift from fatty acid to glucose metabolism for energy production. The aim of this study was to determine whether left ventricular remodeling with and without late-onset heart failure after myocardial infarction is associated with regional changes in the expression of regulatory proteins of glucose or fatty acid metabolism. METHODS: Myocardial infarction was induced in rats by ligation of the left anterior descending coronary artery (LAD). In infarcted and sham-operated hearts the peri-infarction region (5-mm zone surrounding the region at risk), the interventricular septum and the right ventricular free wall were separated for analysis. RESULTS: At 8 and 20 weeks after LAD ligation, the peri-infarction region and the septum exhibited marked re-expression of atrial natriuretic factor [+252+/-37 and +1093+/-279%, respectively, in the septum (P<0.05)] and of alpha-smooth muscle actin [+34+/-10 and +43+/-14%, respectively, in the septum (P<0.05)]. At 8 weeks, when left ventricular hypertrophy was present without signs of heart failure, myocardial mRNA expression of glucose transporters (GLUT-1 and GLUT-4) was not altered, whereas mRNA expression of medium-chain acyl-CoA dehydrogenase (MCAD) was significantly reduced in the peri-infarction region (-25+/-7%; P<0.05). In hearts exhibiting heart failure 20 weeks after infarct-induction there was a change in all three ventricular regions of both mRNA and protein content of GLUT-1 [+72+/-28 and +121+/-15%, respectively, in the peri-infarction region (P<0.05)] and MCAD [-29+/-9 and -56+/-4%, respectively, in the peri-infarction region (P<0.05)]. CONCLUSION: In rats with large myocardial infarction, progression from compensated remodeling to overt heart failure is associated with upregulation of GLUT-1 and downregulation of MCAD in both the peri-infarction region and the septum.