130 resultados para Neuropsychology, Mild traumatic brain injury, DASS, Psychopathology, Assessment, Diagnosis
Resumo:
Experimental evidence indicates a role of the N-methyl-D-aspartate receptor in the pathogenesis of brain injury occurring during cardiac surgery with cardiopulmonary bypass (CPB). Dextromethorphan is a noncompetitive antagonist of this receptor with a favorable safety profile. Thirteen children age 3-36 months undergoing cardiac surgery with expected CPB of 60 minutes or more were randomly assigned to treatment with dextromethorphan (36-38 mg/kg/day) or placebo administered by naso-gastric tube. Dextromethorphan was absorbed well and reached putative therapeutic levels in blood and cerebrospinal fluid. Adverse effects were not observed. Mild hemiparesis developed after operation in one child of each group, and severe encephalopathy in one of the placebo group. Sharp waves were recorded in postoperative continuous electroencephalography in all placebo (n = 7) but only in 2/6 dextromethorphan treated children (p = 0.02). Pre- and postoperative cranial magnetic resonance imaging (MRI) revealed less pronounced ventricular enlargement in the dextromethorphan group (not significant). An increase of periventricular white matter lesions was visible in two placebo-treated children only. No elevations of cerebrospinal fluid enzymes were observed in either group. Although children with dextromethorphan showed less abnormalities in electroencephalography and MRI, dissimilarities of the treatment groups by chance diminished conclusions to possible protective effects of dextromethorphan at this time.
Resumo:
Due to advances in neonatal intensive care over the last decades, the pattern of brain injury seen in very preterm infants has evolved in more subtle lesions that are still essential to diagnose in regard to neurodevelopmental outcome. While cranial ultrasound is still used at the bedside, magnetic resonance imaging (MRI) is becoming increasingly used in this population for the assessment of brain maturation and white and grey matter lesions. Therefore, MRI provides a better prognostic value for the neurodevelopmental outcome of these preterms. Furthermore, the development of new MRI techniques, such as diffusion tensor imaging, resting state functional connectivity and magnetic resonance spectroscopy, may further increase the prognostic value, helping to counsel parents and allocate early intervention services.
Resumo:
We report here with a case of religious delusion in a 39 years old woman. She had suffered a head injury with right temporal concussion 13 years before but had no earlier history of psychiatric disorder. In view of the fact that this acute psychiatric state lasted for a short duration of time and that personality and affects were preserved, this incident is compared to the schizophreniform disorder of the type DSM-III-R. The hypothesis of an acquired predisposition due to head injury has been put forward as an explanation.
Resumo:
BACKGROUND: Data regarding immunomodulatory effects of parenteral n-3 fatty acids in sepsis are conflicting. In this study, the effect of administration of parenteral n-3 fatty acids on markers of brain injury, incidence of sepsis-associated delirium, and inflammatory mediators in septic patients was investigated. METHODS: Fifty patients with sepsis were randomized to receive either 2 ml/kg/day of a lipid emulsion containing highly refined fish oil (equivalent to n-3 fatty acids 0.12 mg/kg/day) during 7 days after admission to the intensive care unit or standard treatment. Markers of brain injury and inflammatory mediators were measured on days 1, 2, 3 and 7. Assessment for sepsis-associated delirium was performed daily. The primary outcome was the difference in S-100β from baseline to peak level between both the intervention and the control group, compared by t-test. Changes of all markers over time were explored in both groups, fitting a generalized estimating equations model. RESULTS: Mean difference in change of S-100β from baseline to peak level was 0.34 (95% CI: -0.18-0.85) between the intervention and control group, respectively (P = 0.19). We found no difference in plasma levels of S-100β, neuron-specific enolase, interleukin (IL)-6, IL-8, IL-10, and C-reactive protein between groups over time. Incidence of sepsis-associated delirium was 75% in the intervention and 71% in the control groups (risk difference 4%, 95% CI -24-31%, P = 0.796). CONCLUSION: Administration of n-3 fatty acids did not affect markers of brain injury, incidence of sepsis-associated delirium, and inflammatory mediators in septic patients.
Resumo:
Neuroprotective strategies that limit secondary tissue loss and/or improve functional outcomes have been identified in multiple animal models of ischemic, hemorrhagic, traumatic and nontraumatic cerebral lesions. However, use of these potential interventions in human randomized controlled studies has generally given disappointing results. In this paper, we summarize the current status in terms of neuroprotective strategies, both in the immediate and later stages of acute brain injury in adults. We also review potential new strategies and highlight areas for future research.
Resumo:
Purpose: The aim of this educational poster is to introduce the technical principles of cerebral perfusion CT and to provide examples of its clinical applications and potential limitations in the everyday emergency practice. Methods and materials: Cerebral perfusion CT is a well established investigatory tool for many vascular and parenchymal brain dysfunctions. CT perfusion maps allow a semiquantitative assessment of cerebral perfusion. Results: Currently, cerebral perfusion CT has a pivotal role in differentiating reversible from irreversible ischemic parenchymal insult besides its integral role in grading vasospasm after subarachnoid hemorrhage. Furthermore, cerebral perfusion CT can be coupled to acetazolamide administration in order to assess the cerebrovascular reserve capacity before performing extra-/intra-cranial bypass surgery in patients with cerebral vascular insufficiency. Cerebral perfusion CT can also identify diffuse abnormalities of cerebral perfusion in children with traumatic brain injury showing a low initial GCS in order to predict the final outcome regarding the late occurrence of irreversible parenchymal damage. Cerebral Perfusion CT is also able to detect focal parenchymal perfusion abnormalities in acute epileptic seizures. Conclusion: Cerebral perfusion CT can be integrated in the management of many vascular, traumatic and functional disorders of the brain.
Resumo:
We investigated whether neuron-specific enolase (NSE) in serum or cerebrospinal fluid (CSF) reflects subtle or manifest brain injury in children undergoing cardiac surgery using cardiopulmonary bypass (CPB). NSE was measured in serum (s-NSE) before, and up to, 102 h after surgery in 27 children undergoing cardiac surgery with CPB. In 11 children, CSF-NSE was also measured 48 or 66 h post-surgery. As erythrocytes contain NSE, hemoglobin concentration in the samples was determined spectrophotometrically at 550 nm (cut-off limit: absorbance 0.4 = 560 mg/l) in 14 children and in a further 13 children by spectroscopic multicomponent analysis (cut-off limit 5 micromol/l = 80 mg/l). One hundred and one of 214 post-operative serum samples (47%) had to be discarded because of hemolysis (18% spectrophotometrically at 550 nm and 88% with spectroscopic multicomponent analysis). On the first and second post-operative day, the median s-NSE values were significantly higher when compared with samples taken after 54 h or longer (P = 0.008 and P = 0.002). All CSF-NSE levels were within the normal range and below the s-NSE measured in the same patient. Although in our study elevated s-NSE seems to indicate brain injury in CPB-surgery, the low concentration of NSE in the post-operative CSF of 11 children puts the neuronal origin of s-NSE in question. NSE from other non-neuronal tissues probably contributes to the elevated s-NSE. Additionally, normal post-operative CSF-NSE values in two children with post-operative neurological sequelae might question the predictive value of CSF-NSE with regard to brain injury.
Resumo:
Neuropsychology is a scientific discipline, born in the XIX century, and bridges the fields of neurology and psychology. Neuropsychologists apply scientific knowledge about the relationship between brain function and mental performances. The major clinical role of a neuropsychological evaluation is to help to establish medical and functional diagnosis in patients (adults or infants) with different neurological pathologies such as stroke, traumatic brain injury, dementia, epilepsy.... Such analysis necessitates accurate observation of behaviour and administration of tests of mental abilities (e.g. language, memory...). Test results can also help to clarify the nature of cognitive difficulties and to support the formulation of plans for neuropsychological therapy and functional adjustment in every day life.
Resumo:
PURPOSE OF REVIEW: A substantial body of evidence supports the use of intensive insulin therapy in general critical care practice, particularly in surgical intensive care unit patients. The impact of intensive insulin therapy on the outcome of critically ill neurological patients, however, is still controversial. While avoidance of hyperglycemia is recommended in neurointensive care, no recommendations exist regarding the optimal target for systemic glucose control after severe brain injury. RECENT FINDINGS: An increase in brain metabolic demand leading to a deficiency in cerebral extracellular glucose has been observed in critically ill neurological patients and correlates with poor outcome. In this setting, a reduction of systemic glucose below 6 mmol/l with exogenous insulin has been found to exacerbate brain metabolic distress. Recent studies have confirmed these findings while showing intensive insulin therapy to have no substantial benefit on the outcome of critically ill neurological patients. SUMMARY: Questions persist regarding the optimal target for glucose control after severe brain injury. Further studies are needed to analyze the impact of intensive insulin therapy on brain glucose metabolism and outcome of critically ill neurological patients. According to the available evidence, a less restrictive target for systemic glucose control (6-10 mmol/l) may be more appropriate.
Resumo:
PURPOSE: Experimental evidence suggests that lactate is neuroprotective after acute brain injury; however, data in humans are lacking. We examined whether exogenous lactate supplementation improves cerebral energy metabolism in humans with traumatic brain injury (TBI). METHODS: We prospectively studied 15 consecutive patients with severe TBI monitored with cerebral microdialysis (CMD), brain tissue PO2 (PbtO2), and intracranial pressure (ICP). Intervention consisted of a 3-h intravenous infusion of hypertonic sodium lactate (aiming to increase systemic lactate to ca. 5 mmol/L), administered in the early phase following TBI. We examined the effect of sodium lactate on neurochemistry (CMD lactate, pyruvate, glucose, and glutamate), PbtO2, and ICP. RESULTS: Treatment was started on average 33 ± 16 h after TBI. A mixed-effects multilevel regression model revealed that sodium lactate therapy was associated with a significant increase in CMD concentrations of lactate [coefficient 0.47 mmol/L, 95% confidence interval (CI) 0.31-0.63 mmol/L], pyruvate [13.1 (8.78-17.4) μmol/L], and glucose [0.1 (0.04-0.16) mmol/L; all p < 0.01]. A concomitant reduction of CMD glutamate [-0.95 (-1.94 to 0.06) mmol/L, p = 0.06] and ICP [-0.86 (-1.47 to -0.24) mmHg, p < 0.01] was also observed. CONCLUSIONS: Exogenous supplemental lactate can be utilized aerobically as a preferential energy substrate by the injured human brain, with sparing of cerebral glucose. Increased availability of cerebral extracellular pyruvate and glucose, coupled with a reduction of brain glutamate and ICP, suggests that hypertonic lactate therapy has beneficial cerebral metabolic and hemodynamic effects after TBI.
Resumo:
BACKGROUND: Age and the Glasgow Coma Scale (GCS) score on admission are considered important predictors of outcome after traumatic brain injury. We investigated the predictive value of the GCS in a large group of patients whose computerised multimodal bedside monitoring data had been collected over the previous 10 years. METHODS: Data from 358 subjects with head injury, collected between 1992 and 2001, were analysed retrospectively. Patients were grouped according to year of admission. Glasgow Outcome Scores (GOS) were determined at six months. Spearman's correlation coefficients between GCS and GOS scores were calculated for each year. RESULTS: On average 34 (SD: 7) patients were monitored every year. We found a significant correlation between the GCS and GOS for the first five years (overall 1992-1996: r = 0.41; p<0.00001; n = 183) and consistent lack of correlations from 1997 onwards (overall 1997-2001: r = 0.091; p = 0.226; n = 175). In contrast, correlations between age and GOS were in both time periods significant and similar (r = -0.24 v r = -0.24; p<0.002). CONCLUSIONS: The admission GCS lost its predictive value for outcome in this group of patients from 1997 onwards. The predictive value of the GCS should be carefully reconsidered when building prognostic models incorporating multimodality monitoring after head injury.
Resumo:
OBJECTIVES: Recommendations for EEG monitoring in the ICU are lacking. The Neurointensive Care Section of the ESICM assembled a multidisciplinary group to establish consensus recommendations on the use of EEG in the ICU. METHODS: A systematic review was performed and 42 studies were included. Data were extracted using the PICO approach, including: (a) population, i.e. ICU patients with at least one of the following: traumatic brain injury, subarachnoid hemorrhage, intracerebral hemorrhage, stroke, coma after cardiac arrest, septic and metabolic encephalopathy, encephalitis, and status epilepticus; (b) intervention, i.e. EEG monitoring of at least 30 min duration; (c) control, i.e. intermittent vs. continuous EEG, as no studies compared patients with a specific clinical condition, with and without EEG monitoring; (d) outcome endpoints, i.e. seizure detection, ischemia detection, and prognostication. After selection, evidence was classified and recommendations developed using the GRADE system. RECOMMENDATIONS: The panel recommends EEG in generalized convulsive status epilepticus and to rule out nonconvulsive seizures in brain-injured patients and in comatose ICU patients without primary brain injury who have unexplained and persistent altered consciousness. We suggest EEG to detect ischemia in comatose patients with subarachnoid hemorrhage and to improve prognostication of coma after cardiac arrest. We recommend continuous over intermittent EEG for refractory status epilepticus and suggest it for patients with status epilepticus and suspected ongoing seizures and for comatose patients with unexplained and persistent altered consciousness. CONCLUSIONS: EEG monitoring is an important diagnostic tool for specific indications. Further data are necessary to understand its potential for ischemia assessment and coma prognostication.
Resumo:
A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units. © RSNA, 2014 Online supplemental material is available for this article.
Resumo:
Traumatic brain injury (TBI) is recognized as a cause of hypopituitarism even after mild TBI. Although over the past decade, a growing body of research has detailed neuroendocrine changes induced by TBI, the mechanisms and risk factors responsible for this pituitary dysfunction are still unclear. Around the world, sports-especially combative sports-are very popular. However, sports are not generally considered as a cause of TBI in most epidemiological studies, and the link between sports-related head trauma and hypopituitarism has not been investigated until recently. Thus, there is a paucity of data regarding this important concern. Because of the large number of young sports participants with near-normal life expectancy, the implications of undiagnosed or untreated postconcussion pituitary dysfunction can be dramatic. Understanding the pathophysiological mechanisms and risk factors of hypopituitarism caused by sports injuries is thus an important issue that concerns both medical staff and sponsors of sports. The aim of this paper was to summarize the best evidence for understanding the pathophysiological mechanisms and to discuss the current data and recommendations on sports-related head trauma as a cause of hypopituitarism.
Resumo:
OBJECTIVES: To analyze the effect of tight glycemic control with the use of intensive insulin therapy on cerebral glucose metabolism in patients with severe brain injury. DESIGN: Retrospective analysis of a prospective observational cohort. SETTING: University hospital neurologic intensive care unit. PATIENTS: Twenty patients (median age 59 yrs) monitored with cerebral microdialysis as part of their clinical care. INTERVENTIONS: Intensive insulin therapy (systemic glucose target: 4.4-6.7 mmol/L [80-120 mg/dL]). MEASUREMENTS AND MAIN RESULTS: Brain tissue markers of glucose metabolism (cerebral microdialysis glucose and lactate/pyruvate ratio) and systemic glucose were collected hourly. Systemic glucose levels were categorized as within the target "tight" (4.4-6.7 mmol/L [80-120 mg/dL]) vs. "intermediate" (6.8-10.0 mmol/L [121-180 mg/dL]) range. Brain energy crisis was defined as a cerebral microdialysis glucose <0.7 mmol/L with a lactate/pyruvate ratio >40. We analyzed 2131 cerebral microdialysis samples: tight systemic glucose levels were associated with a greater prevalence of low cerebral microdialysis glucose (65% vs. 36%, p < 0.01) and brain energy crisis (25% vs.17%, p < 0.01) than intermediate levels. Using multivariable analysis, and adjusting for intracranial pressure and cerebral perfusion pressure, systemic glucose concentration (adjusted odds ratio 1.23, 95% confidence interval [CI] 1.10-1.37, for each 1 mmol/L decrease, p < 0.001) and insulin dose (adjusted odds ratio 1.10, 95% CI 1.04-1.17, for each 1 U/hr increase, p = 0.02) independently predicted brain energy crisis. Cerebral microdialysis glucose was lower in nonsurvivors than in survivors (0.46 +/- 0.23 vs. 1.04 +/- 0.56 mmol/L, p < 0.05). Brain energy crisis was associated with increased mortality at hospital discharge (adjusted odds ratio 7.36, 95% CI 1.37-39.51, p = 0.02). CONCLUSIONS: In patients with severe brain injury, tight systemic glucose control is associated with reduced cerebral extracellular glucose availability and increased prevalence of brain energy crisis, which in turn correlates with increased mortality. Intensive insulin therapy may impair cerebral glucose metabolism after severe brain injury.