64 resultados para Network-based
Resumo:
OBJECTIVE: To describe the epidemiology of chromosomal and non-chromosomal cases of atrioventricular septal defects in Europe. METHODS: Data were obtained from EUROCAT, a European network of population-based registries collecting data on congenital anomalies. Data from 13 registries for the period 2000-2008 were included. RESULTS: There was a total of 993 cases of atrioventricular septal defects, with a total prevalence of 5.3 per 10,000 births (95% confidence interval 4.1 to 6.5). Of the total cases, 250 were isolated cardiac lesions, 583 were chromosomal cases, 79 had multiple anomalies, 58 had heterotaxia sequence, and 23 had a monogenic syndrome. The total prevalence of chromosomal cases was 3.1 per 10,000 (95% confidence interval 1.9 to 4.3), with a large variation between registers. Of the 993 cases, 639 cases were live births, 45 were stillbirths, and 309 were terminations of pregnancy owing to foetal anomaly. Among the groups, additional associated cardiac anomalies were most frequent in heterotaxia cases (38%) and least frequent in chromosomal cases (8%). Coarctation of the aorta was the most common associated cardiac defect. The 1-week survival rate for live births was 94%. CONCLUSION: Of all cases, three-quarters were associated with other anomalies, both chromosomal and non-chromosomal. For infants with atrioventricular septal defects and no chromosomal anomalies, cardiac defects were often more complex compared with infants with atrioventricular septal defects and a chromosomal anomaly. Clinical outcomes for atrioventricular septal defects varied between regions. The proportion of termination of pregnancy for foetal anomaly was higher for cases with multiple anomalies, chromosomal anomalies, and heterotaxia sequence.
Resumo:
This PhD thesis addresses the issue of scalable media streaming in large-scale networking environments. Multimedia streaming is one of the largest sink of network resources and this trend is still growing as testified by the success of services like Skype, Netflix, Spotify and Popcorn Time (BitTorrent-based). In traditional client-server solutions, when the number of consumers increases, the server becomes the bottleneck. To overcome this problem, the Content-Delivery Network (CDN) model was invented. In CDN model, the server copies the media content to some CDN servers, which are located in different strategic locations on the network. However, they require heavy infrastructure investment around the world, which is too expensive. Peer-to-peer (P2P) solutions are another way to achieve the same result. These solutions are naturally scalable, since each peer can act as both a receiver and a forwarder. Most of the proposed streaming solutions in P2P networks focus on routing scenarios to achieve scalability. However, these solutions cannot work properly in video-on-demand (VoD) streaming, when resources of the media server are not sufficient. Replication is a solution that can be used in these situations. This thesis specifically provides a family of replication-based media streaming protocols, which are scalable, efficient and reliable in P2P networks. First, it provides SCALESTREAM, a replication-based streaming protocol that adaptively replicates media content in different peers to increase the number of consumers that can be served in parallel. The adaptiveness aspect of this solution relies on the fact that it takes into account different constraints like bandwidth capacity of peers to decide when to add or remove replicas. SCALESTREAM routes media blocks to consumers over a tree topology, assuming a reliable network composed of homogenous peers in terms of bandwidth. Second, this thesis proposes RESTREAM, an extended version of SCALESTREAM that addresses the issues raised by unreliable networks composed of heterogeneous peers. Third, this thesis proposes EAGLEMACAW, a multiple-tree replication streaming protocol in which two distinct trees, named EAGLETREE and MACAWTREE, are built in a decentralized manner on top of an underlying mesh network. These two trees collaborate to serve consumers in an efficient and reliable manner. The EAGLETREE is in charge of improving efficiency, while the MACAWTREE guarantees reliability. Finally, this thesis provides TURBOSTREAM, a hybrid replication-based streaming protocol in which a tree overlay is built on top of a mesh overlay network. Both these overlays cover all peers of the system and collaborate to improve efficiency and low-latency in streaming media to consumers. This protocol is implemented and tested in a real networking environment using PlanetLab Europe testbed composed of peers distributed in different places in Europe.
Resumo:
Summary The specific CD8+ T cell immune response against tumors relies on the recognition by the T cell receptor (TCR) on cytotoxic T lymphocytes (CTL) of antigenic peptides bound to the class I major histocompatibility complex (MHC) molecule. Such tumor associated antigenic peptides are the focus of tumor immunotherapy with peptide vaccines. The strategy for obtaining an improved immune response often involves the design of modified tumor associated antigenic peptides. Such modifications aim at creating higher affinity and/or degradation resistant peptides and require precise structures of the peptide-MHC class I complex. In addition, the modified peptide must be cross-recognized by CTLs specific for the parental peptide, i.e. preserve the structure of the epitope. Detailed structural information on the modified peptide in complex with MHC is necessary for such predictions. In this thesis, the main focus is the development of theoretical in silico methods for prediction of both structure and cross-reactivity of peptide-MHC class I complexes. Applications of these methods in the context of immunotherapy are also presented. First, a theoretical method for structure prediction of peptide-MHC class I complexes is developed and validated. The approach is based on a molecular dynamics protocol to sample the conformational space of the peptide in its MHC environment. The sampled conformers are evaluated using conformational free energy calculations. The method, which is evaluated for its ability to reproduce 41 X-ray crystallographic structures of different peptide-MHC class I complexes, shows an overall prediction success of 83%. Importantly, in the clinically highly relevant subset of peptide-HLAA*0201 complexes, the prediction success is 100%. Based on these structure predictions, a theoretical approach for prediction of cross-reactivity is developed and validated. This method involves the generation of quantitative structure-activity relationships using three-dimensional molecular descriptors and a genetic neural network. The generated relationships are highly predictive as proved by high cross-validated correlation coefficients (0.78-0.79). Together, the here developed theoretical methods open the door for efficient rational design of improved peptides to be used in immunotherapy. Résumé La réponse immunitaire spécifique contre des tumeurs dépend de la reconnaissance par les récepteurs des cellules T CD8+ de peptides antigéniques présentés par les complexes majeurs d'histocompatibilité (CMH) de classe I. Ces peptides sont utilisés comme cible dans l'immunothérapie par vaccins peptidiques. Afin d'augmenter la réponse immunitaire, les peptides sont modifiés de façon à améliorer l'affinité et/ou la résistance à la dégradation. Ceci nécessite de connaître la structure tridimensionnelle des complexes peptide-CMH. De plus, les peptides modifiés doivent être reconnus par des cellules T spécifiques du peptide natif. La structure de l'épitope doit donc être préservée et des structures détaillées des complexes peptide-CMH sont nécessaires. Dans cette thèse, le thème central est le développement des méthodes computationnelles de prédiction des structures des complexes peptide-CMH classe I et de la reconnaissance croisée. Des applications de ces méthodes de prédiction à l'immunothérapie sont également présentées. Premièrement, une méthode théorique de prédiction des structures des complexes peptide-CMH classe I est développée et validée. Cette méthode est basée sur un échantillonnage de l'espace conformationnel du peptide dans le contexte du récepteur CMH classe I par dynamique moléculaire. Les conformations sont évaluées par leurs énergies libres conformationnelles. La méthode est validée par sa capacité à reproduire 41 structures des complexes peptide-CMH classe I obtenues par cristallographie aux rayons X. Le succès prédictif général est de 83%. Pour le sous-groupe HLA-A*0201 de complexes de grande importance pour l'immunothérapie, ce succès est de 100%. Deuxièmement, à partir de ces structures prédites in silico, une méthode théorique de prédiction de la reconnaissance croisée est développée et validée. Celle-ci consiste à générer des relations structure-activité quantitatives en utilisant des descripteurs moléculaires tridimensionnels et un réseau de neurones couplé à un algorithme génétique. Les relations générées montrent une capacité de prédiction remarquable avec des valeurs de coefficients de corrélation de validation croisée élevées (0.78-0.79). Les méthodes théoriques développées dans le cadre de cette thèse ouvrent la voie du design de vaccins peptidiques améliorés.
Resumo:
Purpose/Objective(s): Adenosquamous carcinoma (AC) of the head and neck is a distinct entity first described in 1968. Its natural history is more aggressive than squamous cell carcinoma but this is based on very small series reported in the literature. The goal of this study was to assess the clinical profile, outcome, patterns of failure and prognostic factors in patients with AC of the head and neck treated by radiation therapy (RT) with or without chemotherapy (CT).Materials/Methods: Data from 18 patients with Stage I (n = 3), II (n = 1), III (n = 4), or IVa (n = 10) AC, treated between 1989 and 2009, were collected in a retrospective multicenter Rare Cancer Network study. Median age was 60 years (range, 48 - 73 years). Fourteen patients were male and 4 female. Risk factors, including perineural invasion, lymphangitis, vascular invasion, positive margins, were present in 83% of the patients. Tumor sites included oral cavity in 4, oropharynx in 4, hypopharynx in2, larynx in 2, salivary glands in 2, nasal vestibule in 2, nasopharynx in 1, and maxillary sinus in 1 patient. Surgery (S) was performed in all but 5 patients. S alone was performed in only 1 patient, and definitive RT alone in 3 patients. Fourteen patients received combined modality treatment (S+RT in 10, RT+CT in 2, and all of the three modalities in 2 patients). Median RT dose to the primary and to the nodes was 66 Gy (range, 50 - 72 Gy) and 53 Gy (range, 44 - 66 Gy), respectively (1.8 - 2.0 Gy/fr., 5 fr./ week). In 4 patients, the planning treatment volume included the primary tumor site only. Seven patients were treated with 2D RT, 7 with 3D conformal RT, and 2 with intensity-modulated RT.Results: After a median follow-up period of 38 months (range, 9 - 62 months), 8 patients developed distant metastases (lung, bone, mediastinum, and liver), 6 presented nodal recurrences, and only 4 had a local relapse at the primary site (all in-field recurrences). At last follow-up, 6 patients were alive without disease, 1 alive with disease, 9 died from progressive disease, and 2 died from intercurrent disease. The 3-year and median overall survival, disease-free survival (DFS) and locoregional control rates were 52% (95% confidence interval [CI]: 28 - 76%) and 39 months, 36% (95% CI: 13 - 49%) and 12 months, and 54% (95% CI: 26 - 82%) and 40 months, respectively. In multivariate analysis (Cox model), DFS was negatively influenced by the presence of extracapsular extension (p = 0.02) and advanced stage (IV versus I-III, p = 0.003).Conclusions: Overall prognosis of locoregionally advanced AC remains poor, and distant metastases and nodal relapse occur in almost half of the cases. However, local control is relatively good, and early stage AC patients had prolonged DFS when treated with combined modality treatment.
Resumo:
The Radioimmunotherapy Network (RIT-N) is a Web-based, international registry collecting long-term observational data about radioimmunotherapy-treated patients with malignant lymphoma outside randomized clinical studies. The RIT-N collects unbiased data on treatment indications, disease stages, patients' conditions, lymphoma subtypes, and hematologic side effects of radioimmunotherapy treatment. Methods: RIT-N is located at the University of Gottingen, Germany, and collected data from 14 countries. Data were entered by investigators into a Web-based central database managed by an independent clinical research organization. Results: Patients (1,075) were enrolled from December 2006 until November 2009, and 467 patients with an observation time of at least 12 mo were included in the following analysis. Diagnoses were as follows: 58% follicular lymphoma and 42% other B-cell lymphomas. The mean overall survival was 28 mo for follicular lymphoma and 26 mo for other lymphoma subtypes. Hematotoxicity was mild for hemoglobin (World Health Organization grade II), with a median nadir of 10 g/dL, but severe (World Health Organization grade III) for platelets and leukocytes, with a median nadir of 7,000/mu L and 2.2/mu L, respectively. Conclusion: Clinical usage of radioimmunotherapy differs from the labeled indications and can be assessed by this registry, enabling analyses of outcome and toxicity data beyond clinical trials. This analysis proves that radioimmunotherapy in follicular lymphoma and other lymphoma subtypes is a safe and efficient treatment option.
Resumo:
Recently graph theory and complex networks have been widely used as a mean to model functionality of the brain. Among different neuroimaging techniques available for constructing the brain functional networks, electroencephalography (EEG) with its high temporal resolution is a useful instrument of the analysis of functional interdependencies between different brain regions. Alzheimer's disease (AD) is a neurodegenerative disease, which leads to substantial cognitive decline, and eventually, dementia in aged people. To achieve a deeper insight into the behavior of functional cerebral networks in AD, here we study their synchronizability in 17 newly diagnosed AD patients compared to 17 healthy control subjects at no-task, eyes-closed condition. The cross-correlation of artifact-free EEGs was used to construct brain functional networks. The extracted networks were then tested for their synchronization properties by calculating the eigenratio of the Laplacian matrix of the connection graph, i.e., the largest eigenvalue divided by the second smallest one. In AD patients, we found an increase in the eigenratio, i.e., a decrease in the synchronizability of brain networks across delta, alpha, beta, and gamma EEG frequencies within the wide range of network costs. The finding indicates the destruction of functional brain networks in early AD.
Resumo:
Computational network analysis provides new methods to analyze the brain's structural organization based on diffusion imaging tractography data. Networks are characterized by global and local metrics that have recently given promising insights into diagnosis and the further understanding of psychiatric and neurologic disorders. Most of these metrics are based on the idea that information in a network flows along the shortest paths. In contrast to this notion, communicability is a broader measure of connectivity which assumes that information could flow along all possible paths between two nodes. In our work, the features of network metrics related to communicability were explored for the first time in the healthy structural brain network. In addition, the sensitivity of such metrics was analysed using simulated lesions to specific nodes and network connections. Results showed advantages of communicability over conventional metrics in detecting densely connected nodes as well as subsets of nodes vulnerable to lesions. In addition, communicability centrality was shown to be widely affected by the lesions and the changes were negatively correlated with the distance from lesion site. In summary, our analysis suggests that communicability metrics that may provide an insight into the integrative properties of the structural brain network and that these metrics may be useful for the analysis of brain networks in the presence of lesions. Nevertheless, the interpretation of communicability is not straightforward; hence these metrics should be used as a supplement to the more standard connectivity network metrics.
Resumo:
The paper presents a novel method for monitoring network optimisation, based on a recent machine learning technique known as support vector machine. It is problem-oriented in the sense that it directly answers the question of whether the advised spatial location is important for the classification model. The method can be used to increase the accuracy of classification models by taking a small number of additional measurements. Traditionally, network optimisation is performed by means of the analysis of the kriging variances. The comparison of the method with the traditional approach is presented on a real case study with climate data.
Resumo:
Although cross-sectional diffusion tensor imaging (DTI) studies revealed significant white matter changes in mild cognitive impairment (MCI), the utility of this technique in predicting further cognitive decline is debated. Thirty-five healthy controls (HC) and 67 MCI subjects with DTI baseline data were neuropsychologically assessed at one year. Among them, there were 40 stable (sMCI; 9 single domain amnestic, 7 single domain frontal, 24 multiple domain) and 27 were progressive (pMCI; 7 single domain amnestic, 4 single domain frontal, 16 multiple domain). Fractional anisotropy (FA) and longitudinal, radial, and mean diffusivity were measured using Tract-Based Spatial Statistics. Statistics included group comparisons and individual classification of MCI cases using support vector machines (SVM). FA was significantly higher in HC compared to MCI in a distributed network including the ventral part of the corpus callosum, right temporal and frontal pathways. There were no significant group-level differences between sMCI versus pMCI or between MCI subtypes after correction for multiple comparisons. However, SVM analysis allowed for an individual classification with accuracies up to 91.4% (HC versus MCI) and 98.4% (sMCI versus pMCI). When considering the MCI subgroups separately, the minimum SVM classification accuracy for stable versus progressive cognitive decline was 97.5% in the multiple domain MCI group. SVM analysis of DTI data provided highly accurate individual classification of stable versus progressive MCI regardless of MCI subtype, indicating that this method may become an easily applicable tool for early individual detection of MCI subjects evolving to dementia.
Resumo:
Newborn neurons are generated in the adult hippocampus from a pool of self-renewing stem cells located in the subgranular zone (SGZ) of the dentate gyrus. Their activation, proliferation, and maturation depend on a host of environmental and cellular factors but, until recently, the contribution of local neuronal circuitry to this process was relatively unknown. In their recent publication, Song and colleagues have uncovered a novel circuit-based mechanism by which release of the neurotransmitter, γ-aminobutyric acid (GABA), from parvalbumin-expressing (PV) interneurons, can hold radial glia-like (RGL) stem cells of the adult SGZ in a quiescent state. This tonic GABAergic signal, dependent upon the activation of γ(2) subunit-containing GABA(A) receptors of RGL stem cells, can thus prevent their proliferation and subsequent maturation or return them to quiescence if previously activated. PV interneurons are thus capable of suppressing neurogenesis during periods of high network activity and facilitating neurogenesis when network activity is low.
Resumo:
ABSTRACT : A firm's competitive advantage can arise from internal resources as well as from an interfirm network. -This dissertation investigates the competitive advantage of a firm involved in an innovation network by integrating strategic management theory and social network theory. It develops theory and provides empirical evidence that illustrates how a networked firm enables the network value and appropriates this value in an optimal way according to its strategic purpose. The four inter-related essays in this dissertation provide a framework that sheds light on the extraction of value from an innovation network by managing and designing the network in a proactive manner. The first essay reviews research in social network theory and knowledge transfer management, and identifies the crucial factors of innovation network configuration for a firm's learning performance or innovation output. The findings suggest that network structure, network relationship, and network position all impact on a firm's performance. Although the previous literature indicates that there are disagreements about the impact of dense or spare structure, as well as strong or weak ties, case evidence from Chinese software companies reveals that dense and strong connections with partners are positively associated with firms' performance. The second essay is a theoretical essay that illustrates the limitations of social network theory for explaining the source of network value and offers a new theoretical model that applies resource-based view to network environments. It suggests that network configurations, such as network structure, network relationship and network position, can be considered important network resources. In addition, this essay introduces the concept of network capability, and suggests that four types of network capabilities play an important role in unlocking the potential value of network resources and determining the distribution of network rents between partners. This essay also highlights the contingent effects of network capability on a firm's innovation output, and explains how the different impacts of network capability depend on a firm's strategic choices. This new theoretical model has been pre-tested with a case study of China software industry, which enhances the internal validity of this theory. The third essay addresses the questions of what impact network capability has on firm innovation performance and what are the antecedent factors of network capability. This essay employs a structural equation modelling methodology that uses a sample of 211 Chinese Hi-tech firms. It develops a measurement of network capability and reveals that networked firms deal with cooperation between, and coordination with partners on different levels according to their levels of network capability. The empirical results also suggests that IT maturity, the openness of culture, management system involved, and experience with network activities are antecedents of network capabilities. Furthermore, the two-group analysis of the role of international partner(s) shows that when there is a culture and norm gap between foreign partners, a firm must mobilize more resources and effort to improve its performance with respect to its innovation network. The fourth essay addresses the way in which network capabilities influence firm innovation performance. By using hierarchical multiple regression with data from Chinese Hi-tech firms, the findings suggest that there is a significant partial mediating effect of knowledge transfer on the relationships between network capabilities and innovation performance. The findings also reveal that the impacts of network capabilities divert with the environment and strategic decision the firm has made: exploration or exploitation. Network constructing capability provides a greater positive impact on and yields more contributions to innovation performance than does network operating capability in an exploration network. Network operating capability is more important than network constructing capability for innovative firms in an exploitation network. Therefore, these findings highlight that the firm can shape the innovation network proactively for better benefits, but when it does so, it should adjust its focus and change its efforts in accordance with its innovation purposes or strategic orientation.
Resumo:
How have changes in communications technology affected the way that misinformation spreads through a population and persists? To what extent do differences in the architecture of social networks affect the spread of misinformation, relative to the rates and rules by which individuals transmit or eliminate different pieces of information (cultural traits)? Here, we use analytical models and individual-based simulations to study how a 'cultural load' of misinformation can be maintained in a population under a balance between social transmission and selective elimination of cultural traits with low intrinsic value. While considerable research has explored how network architecture affects percolation processes, we find that the relative rates at which individuals transmit or eliminate traits can have much more profound impacts on the cultural load than differences in network architecture. In particular, the cultural load is insensitive to correlations between an individual's network degree and rate of elimination when these quantities vary among individuals. Taken together, these results suggest that changes in communications technology may have influenced cultural evolution more strongly through changes in the amount of information flow, rather than the details of who is connected to whom.
Resumo:
Introduction: The field of Connectomic research is growing rapidly, resulting from methodological advances in structural neuroimaging on many spatial scales. Especially progress in Diffusion MRI data acquisition and processing made available macroscopic structural connectivity maps in vivo through Connectome Mapping Pipelines (Hagmann et al, 2008) into so-called Connectomes (Hagmann 2005, Sporns et al, 2005). They exhibit both spatial and topological information that constrain functional imaging studies and are relevant in their interpretation. The need for a special-purpose software tool for both clinical researchers and neuroscientists to support investigations of such connectome data has grown. Methods: We developed the ConnectomeViewer, a powerful, extensible software tool for visualization and analysis in connectomic research. It uses the novel defined container-like Connectome File Format, specifying networks (GraphML), surfaces (Gifti), volumes (Nifti), track data (TrackVis) and metadata. Usage of Python as programming language allows it to by cross-platform and have access to a multitude of scientific libraries. Results: Using a flexible plugin architecture, it is possible to enhance functionality for specific purposes easily. Following features are already implemented: * Ready usage of libraries, e.g. for complex network analysis (NetworkX) and data plotting (Matplotlib). More brain connectivity measures will be implemented in a future release (Rubinov et al, 2009). * 3D View of networks with node positioning based on corresponding ROI surface patch. Other layouts possible. * Picking functionality to select nodes, select edges, get more node information (ConnectomeWiki), toggle surface representations * Interactive thresholding and modality selection of edge properties using filters * Arbitrary metadata can be stored for networks, thereby allowing e.g. group-based analysis or meta-analysis. * Python Shell for scripting. Application data is exposed and can be modified or used for further post-processing. * Visualization pipelines using filters and modules can be composed with Mayavi (Ramachandran et al, 2008). * Interface to TrackVis to visualize track data. Selected nodes are converted to ROIs for fiber filtering The Connectome Mapping Pipeline (Hagmann et al, 2008) processed 20 healthy subjects into an average Connectome dataset. The Figures show the ConnectomeViewer user interface using this dataset. Connections are shown that occur in all 20 subjects. The dataset is freely available from the homepage (connectomeviewer.org). Conclusions: The ConnectomeViewer is a cross-platform, open-source software tool that provides extensive visualization and analysis capabilities for connectomic research. It has a modular architecture, integrates relevant datatypes and is completely scriptable. Visit www.connectomics.org to get involved as user or developer.