290 resultados para NOXIOUS STIMULI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: In patients with septic shock, circulating monocytes become refractory to stimulation with microbial products. Whether this hyporesponsive state is induced by infection or is related to shock is unknown. To address this question, we measured TNF alpha production by monocytes or by whole blood obtained from healthy volunteers (controls), from patients with septic shock, from patients with severe infection (bacterial pneumonia) without shock, and from patients with cardiogenic shock without infection. MEASUREMENTS: The numbers of circulating monocytes, of CD14+ monocytes, and the expression of monocyte CD14 and the LPS receptor, were assessed by flow cytometry. Monocytes or whole blood were stimulated with lipopolysaccharide endotoxin (LPS), heat-killed Escherichia coli or Staphylococcus aureus, and TNF alpha production was measured by bioassay. RESULTS: The number of circulating monocytes, of CD14+ monocytes, and the monocyte CD14 expression were significantly lower in patients with septic shock than in controls, in patients with bacterial pneumonia or in those with cardiogenic shock (p < 0.001). Monocytes or whole blood of patients with septic shock exhibited a profound deficiency of TNF alpha production in response to all stimuli (p < 0.05 compared to controls). Whole blood of patients with cardiogenic shock also exhibited this defect (p < 0.05 compared to controls), although to a lesser extent, despite normal monocyte counts and normal CD14 expression. CONCLUSIONS: Unlike patients with bacterial pneumonia, patients with septic or cardiogenic shock display profoundly defective TNF alpha production in response to a broad range of infectious stimuli. Thus, down-regulation of cytokine production appears to occur in patients with systemic, but not localised, albeit severe, infections and also in patients with non-infectious circulatory failure. Whilst depletion of monocytes and reduced monocyte CD14 expression are likely to be critical components of the hyporesponsiveness observed in patients with septic shock, other as yet unidentified factors are at work in this group and in patients with cardiogenic shock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sleep spindles are synchronized 11-15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Ca(v)3.3-type Ca(2+) channels and Ca(2+)-dependent small-conductance-type 2 (SK2) K(+) channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To assess the sensitivity and false positive rate (FPR) of neurological examination and somatosensory evoked potentials (SSEPs) to predict poor outcome in adult patients treated with therapeutic hypothermia after cardiopulmonary resuscitation (CPR). METHODS: MEDLINE and EMBASE were searched for cohort studies describing the association of clinical neurological examination or SSEPs after return of spontaneous circulation with neurological outcome. Poor outcome was defined as severe disability, vegetative state and death. Sensitivity and FPR were determined. RESULTS: A total of 1,153 patients from ten studies were included. The FPR of a bilaterally absent cortical N20 response of the SSEP could be calculated from nine studies including 492 patients. The SSEP had an FPR of 0.007 (confidence interval, CI, 0.001-0.047) to predict poor outcome. The Glasgow coma score (GCS) motor response was assessed in 811 patients from nine studies. A GCS motor score of 1-2 at 72 h had a high FPR of 0.21 (CI 0.08-0.43). Corneal reflex and pupillary reactivity at 72 h after the arrest were available in 429 and 566 patients, respectively. Bilaterally absent corneal reflexes had an FPR of 0.02 (CI 0.002-0.13). Bilaterally absent pupillary reflexes had an FPR of 0.004 (CI 0.001-0.03). CONCLUSIONS: At 72 h after the arrest the motor response to painful stimuli and the corneal reflexes are not a reliable tool for the early prediction of poor outcome in patients treated with hypothermia. The reliability of the pupillary response to light and the SSEP is comparable to that in patients not treated with hypothermia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas6 downregulates the activation state of macrophages and thereby their production of proinflammatory cytokines induced by various stimuli. We aimed to determine whether Gas6 is involved in sepsis. We measured Gas6 plasma levels in 13 healthy subjects, 29 patients with severe sepsis, and 18 patients with non-infectious inflammatory diseases. Gas6 level was higher in septic patients than in control groups (P 0.0001). The sensitivity and specificity of Gas6 levels to predict fatal outcome were 83% and 88%. We next investigated whether Gas6 affects cytokine production and outcome in experimental models of endotoxemia and peritonitis in wild-type (WT) and Gas6-/- mice. Circulating levels of Gas6 after LPS 25mg/kg i.p. peaked at 1 hour (P<0.001). Similarly, TNF- was higher in Gas6-/- than in WT mice 1 hour after LPS (P<0.05). Furthermore, 62 anti- and pro-inflammatory cytokines were quantified in plasma after LPS injection. Their levels were globally higher in Gas6-/- plasma after LPS, 47/62 cytokines being at least 50% higher in Gas6-/- than in WT plasma after 1 hour. Mortality induced by 25mg/kg LPS was 25% in WT versus 87% in Gas6-/- mice (P<0.05). LPS-induced mortality in Gas6 receptors Axl-/-, Tyro3-/- and Merkd was also enhanced when compared to WT mice (P<0.001). In peritonitis models (cecal ligation and puncture, CLP, and i.p. injection of E. coli), Gas6 plasma levels increased and remained elevated at least 24 hours. CLP increased mortality in Gas6-/- mice. Finally, we explored the role of Gas6 in LPS-treated macrophages. We found that Gas6 was released by LPS-stimulated WT macrophages and that Gas6-/- macrophages produced more TNF- and IL-6 than WT macrophages. Cytokine release by Gas6-/- macrophages was higher than by WT macrophages (cytokine array). Adjunction of recombinant Gas6 to the culture medium of Gas6-/- macrophages diminished the cytokine production to WT levels. In LPS-treated Gas6-/- macrophages, Akt and Erk1/2 phosphorylation was reduced whereas p38 and NF B activation was enhanced. Thus, in septic patients, elevated Gas6 levels were associated with fatal outcome. In mice, they raised in experimental endotoxemia and peritonitis models, and correlated also with sepsis severity. However, Gas6-/- mice survival in these models was reduced compared to WT. Gas6 secreted by macrophages in response to LPS activated Akt and restrained p38 and NF B activation, thereby dampening macrophage activation. Altogether these data suggest that, during endotoxemia, Gas6-/- mice phenotype resembles that of mice which have undergone PI3K inhibition, indicating that Gas6 is a major modulator of innate immunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Induction of cytotoxic CD8 T-cell responses is enhanced by the exclusive presentation of antigen through dendritic cells, and by innate stimuli, such as toll-like receptor ligands. On the basis of these 2 principles, we designed a vaccine against melanoma. Specifically, we linked the melanoma-specific Melan-A/Mart-1 peptide to virus-like nanoparticles loaded with A-type CpG, a ligand for toll-like receptor 9. Melan-A/Mart-1 peptide was cross-presented, as shown in vitro with human dendritic cells and in HLA-A2 transgenic mice. A phase I/II study in stage II-IV melanoma patients showed that the vaccine was well tolerated, and that 14/22 patients generated ex vivo detectable T-cell responses, with in part multifunctional T cells capable to degranulate and produce IFN-γ, TNF-α, and IL-2. No significant influence of the route of immunization (subcutaneous versus intradermal) nor dosing regimen (weekly versus daily clusters) could be observed. It is interesting to note that, relatively large fractions of responding specific T cells exhibited a central memory phenotype, more than what is achieved by other nonlive vaccines. We conclude that vaccination with CpG loaded virus-like nanoparticles is associated with a human CD8 T-cell response with properties of a potential long-term immune protection from the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human auditory system is comprised of specialized but interacting anatomic and functional pathways encoding object, spatial, and temporal information. We review how learning-induced plasticity manifests along these pathways and to what extent there are common mechanisms subserving such plasticity. A first series of experiments establishes a temporal hierarchy along which sounds of objects are discriminated along basic to fine-grained categorical boundaries and learned representations. A widespread network of temporal and (pre)frontal brain regions contributes to object discrimination via recursive processing. Learning-induced plasticity typically manifested as repetition suppression within a common set of brain regions. A second series considered how the temporal sequence of sound sources is represented. We show that lateralized responsiveness during the initial encoding phase of pairs of auditory spatial stimuli is critical for their accurate ordered perception. Finally, we consider how spatial representations are formed and modified through training-induced learning. A population-based model of spatial processing is supported wherein temporal and parietal structures interact in the encoding of relative and absolute spatial information over the initial ∼300ms post-stimulus onset. Collectively, these data provide insights into the functional organization of human audition and open directions for new developments in targeted diagnostic and neurorehabilitation strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sirtuins (SIRT1-7) are NAD(+)-dependent histone deacetylases (HDACs) that play an important role in the control of metabolism and proliferation and the development of age-associated diseases like oncologic, cardiovascular and neurodegenerative diseases. Cambinol was originally described as a compound inhibiting the activity of SIRT1 and SIRT2, with efficient anti-tumor activity in vivo. Here, we studied the effects of cambinol on microbial sensing by mouse and human immune cells and on host innate immune responses in vivo. Cambinol inhibited the expression of cytokines (TNF, IL-1β, IL-6, IL-12p40, and IFN-γ), NO and CD40 by macrophages, dendritic cells, splenocytes and whole blood stimulated with a broad range of microbial and inflammasome stimuli. Sirtinol, an inhibitor of SIRT1 and SIRT2 structurally related to cambinol, also decreased macrophage response to TLR stimulation. On the contrary, selective inhibitors of SIRT1 (EX-527 and CHIC-35) and SIRT2 (AGK2 and AK-7) used alone or in combination had no inhibitory effect, suggesting that cambinol and sirtinol act by targeting more than just SIRT1 and SIRT2. Cambinol and sirtinol at anti-inflammatory concentrations also did not inhibit SIRT6 activity in in vitro assay. At the molecular level, cambinol impaired stimulus-induced phosphorylation of MAPKs and upstream MEKs. Going well along with its powerful anti-inflammatory activity, cambinol reduced TNF blood levels and bacteremia and improved survival in preclinical models of endotoxic shock and septic shock. Altogether, our data suggest that pharmacological inhibitors of sirtuins structurally related to cambinol may be of clinical interest to treat inflammatory diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of perceptual and cognitive functions with non-invasive brain imaging methods critically depends on the careful selection of stimuli for use in experiments. For example, it must be verified that any observed effects follow from the parameter of interest (e.g. semantic category) rather than other low-level physical features (e.g. luminance, or spectral properties). Otherwise, interpretation of results is confounded. Often, researchers circumvent this issue by including additional control conditions or tasks, both of which are flawed and also prolong experiments. Here, we present some new approaches for controlling classes of stimuli intended for use in cognitive neuroscience, however these methods can be readily extrapolated to other applications and stimulus modalities. Our approach is comprised of two levels. The first level aims at equalizing individual stimuli in terms of their mean luminance. Each data point in the stimulus is adjusted to a standardized value based on a standard value across the stimulus battery. The second level analyzes two populations of stimuli along their spectral properties (i.e. spatial frequency) using a dissimilarity metric that equals the root mean square of the distance between two populations of objects as a function of spatial frequency along x- and y-dimensions of the image. Randomized permutations are used to obtain a minimal value between the populations to minimize, in a completely data-driven manner, the spectral differences between image sets. While another paper in this issue applies these methods in the case of acoustic stimuli (Aeschlimann et al., Brain Topogr 2008), we illustrate this approach here in detail for complex visual stimuli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract (English)General backgroundMultisensory stimuli are easier to recognize, can improve learning and a processed faster compared to unisensory ones. As such, the ability an organism has to extract and synthesize relevant sensory inputs across multiple sensory modalities shapes his perception of and interaction with the environment. A major question in the scientific field is how the brain extracts and fuses relevant information to create a unified perceptual representation (but also how it segregates unrelated information). This fusion between the senses has been termed "multisensory integration", a notion that derives from seminal animal single-cell studies performed in the superior colliculus, a subcortical structure shown to create a multisensory output differing from the sum of its unisensory inputs. At the cortical level, integration of multisensory information is traditionally deferred to higher classical associative cortical regions within the frontal, temporal and parietal lobes, after extensive processing within the sensory-specific and segregated pathways. However, many anatomical, electrophysiological and neuroimaging findings now speak for multisensory convergence and interactions as a distributed process beginning much earlier than previously appreciated and within the initial stages of sensory processing.The work presented in this thesis is aimed at studying the neural basis and mechanisms of how the human brain combines sensory information between the senses of hearing and touch. Early latency non-linear auditory-somatosensory neural response interactions have been repeatedly observed in humans and non-human primates. Whether these early, low-level interactions are directly influencing behavioral outcomes remains an open question as they have been observed under diverse experimental circumstances such as anesthesia, passive stimulation, as well as speeded reaction time tasks. Under laboratory settings, it has been demonstrated that simple reaction times to auditory-somatosensory stimuli are facilitated over their unisensory counterparts both when delivered to the same spatial location or not, suggesting that audi- tory-somatosensory integration must occur in cerebral regions with large-scale spatial representations. However experiments that required the spatial processing of the stimuli have observed effects limited to spatially aligned conditions or varying depending on which body part was stimulated. Whether those divergences stem from task requirements and/or the need for spatial processing has not been firmly established.Hypotheses and experimental resultsIn a first study, we hypothesized that auditory-somatosensory early non-linear multisensory neural response interactions are relevant to behavior. Performing a median split according to reaction time of a subset of behavioral and electroencephalographic data, we found that the earliest non-linear multisensory interactions measured within the EEG signal (i.e. between 40-83ms post-stimulus onset) were specific to fast reaction times indicating a direct correlation of early neural response interactions and behavior.In a second study, we hypothesized that the relevance of spatial information for task performance has an impact on behavioral measures of auditory-somatosensory integration. Across two psychophysical experiments we show that facilitated detection occurs even when attending to spatial information, with no modulation according to spatial alignment of the stimuli. On the other hand, discrimination performance with probes, quantified using sensitivity (d'), is impaired following multisensory trials in general and significantly more so following misaligned multisensory trials.In a third study, we hypothesized that behavioral improvements might vary depending which body part is stimulated. Preliminary results suggest a possible dissociation between behavioral improvements andERPs. RTs to multisensory stimuli were modulated by space only in the case when somatosensory stimuli were delivered to the neck whereas multisensory ERPs were modulated by spatial alignment for both types of somatosensory stimuli.ConclusionThis thesis provides insight into the functional role played by early, low-level multisensory interac-tions. Combining psychophysics and electrical neuroimaging techniques we demonstrate the behavioral re-levance of early and low-level interactions in the normal human system. Moreover, we show that these early interactions are hermetic to top-down influences on spatial processing suggesting their occurrence within cerebral regions having access to large-scale spatial representations. We finally highlight specific interactions between auditory space and somatosensory stimulation on different body parts. Gaining an in-depth understanding of how multisensory integration normally operates is of central importance as it will ultimately permit us to consider how the impaired brain could benefit from rehabilitation with multisensory stimula-Abstract (French)Background théoriqueDes stimuli multisensoriels sont plus faciles à reconnaître, peuvent améliorer l'apprentissage et sont traités plus rapidement comparé à des stimuli unisensoriels. Ainsi, la capacité qu'un organisme possède à extraire et à synthétiser avec ses différentes modalités sensorielles des inputs sensoriels pertinents, façonne sa perception et son interaction avec l'environnement. Une question majeure dans le domaine scientifique est comment le cerveau parvient à extraire et à fusionner des stimuli pour créer une représentation percep- tuelle cohérente (mais aussi comment il isole les stimuli sans rapport). Cette fusion entre les sens est appelée "intégration multisensorielle", une notion qui provient de travaux effectués dans le colliculus supérieur chez l'animal, une structure sous-corticale possédant des neurones produisant une sortie multisensorielle différant de la somme des entrées unisensorielles. Traditionnellement, l'intégration d'informations multisen- sorielles au niveau cortical est considérée comme se produisant tardivement dans les aires associatives supérieures dans les lobes frontaux, temporaux et pariétaux, suite à un traitement extensif au sein de régions unisensorielles primaires. Cependant, plusieurs découvertes anatomiques, électrophysiologiques et de neuroimageries remettent en question ce postulat, suggérant l'existence d'une convergence et d'interactions multisensorielles précoces.Les travaux présentés dans cette thèse sont destinés à mieux comprendre les bases neuronales et les mécanismes impliqués dans la combinaison d'informations sensorielles entre les sens de l'audition et du toucher chez l'homme. Des interactions neuronales non-linéaires précoces audio-somatosensorielles ont été observées à maintes reprises chez l'homme et le singe dans des circonstances aussi variées que sous anes- thésie, avec stimulation passive, et lors de tâches nécessitant un comportement (une détection simple de stimuli, par exemple). Ainsi, le rôle fonctionnel joué par ces interactions à une étape du traitement de l'information si précoce demeure une question ouverte. Il a également été démontré que les temps de réaction en réponse à des stimuli audio-somatosensoriels sont facilités par rapport à leurs homologues unisensoriels indépendamment de leur position spatiale. Ce résultat suggère que l'intégration audio- somatosensorielle se produit dans des régions cérébrales possédant des représentations spatiales à large échelle. Cependant, des expériences qui ont exigé un traitement spatial des stimuli ont produits des effets limités à des conditions où les stimuli multisensoriels étaient, alignés dans l'espace ou encore comme pouvant varier selon la partie de corps stimulée. Il n'a pas été établi à ce jour si ces divergences pourraient être dues aux contraintes liées à la tâche et/ou à la nécessité d'un traitement de l'information spatiale.Hypothèse et résultats expérimentauxDans une première étude, nous avons émis l'hypothèse que les interactions audio- somatosensorielles précoces sont pertinentes pour le comportement. En effectuant un partage des temps de réaction par rapport à la médiane d'un sous-ensemble de données comportementales et électroencépha- lographiques, nous avons constaté que les interactions multisensorielles qui se produisent à des latences précoces (entre 40-83ms) sont spécifique aux temps de réaction rapides indiquant une corrélation directe entre ces interactions neuronales précoces et le comportement.Dans une deuxième étude, nous avons émis l'hypothèse que si l'information spatiale devient perti-nente pour la tâche, elle pourrait exercer une influence sur des mesures comportementales de l'intégration audio-somatosensorielles. Dans deux expériences psychophysiques, nous montrons que même si les participants prêtent attention à l'information spatiale, une facilitation de la détection se produit et ce toujours indépendamment de la configuration spatiale des stimuli. Cependant, la performance de discrimination, quantifiée à l'aide d'un index de sensibilité (d') est altérée suite aux essais multisensoriels en général et de manière plus significative pour les essais multisensoriels non-alignés dans l'espace.Dans une troisième étude, nous avons émis l'hypothèse que des améliorations comportementales pourraient différer selon la partie du corps qui est stimulée (la main vs. la nuque). Des résultats préliminaires suggèrent une dissociation possible entre une facilitation comportementale et les potentiels évoqués. Les temps de réactions étaient influencés par la configuration spatiale uniquement dans le cas ou les stimuli somatosensoriels étaient sur la nuque alors que les potentiels évoqués étaient modulés par l'alignement spatial pour les deux types de stimuli somatosensorielles.ConclusionCette thèse apporte des éléments nouveaux concernant le rôle fonctionnel joué par les interactions multisensorielles précoces de bas niveau. En combinant la psychophysique et la neuroimagerie électrique, nous démontrons la pertinence comportementale des ces interactions dans le système humain normal. Par ailleurs, nous montrons que ces interactions précoces sont hermétiques aux influences dites «top-down» sur le traitement spatial suggérant leur occurrence dans des régions cérébrales ayant accès à des représentations spatiales de grande échelle. Nous soulignons enfin des interactions spécifiques entre l'espace auditif et la stimulation somatosensorielle sur différentes parties du corps. Approfondir la connaissance concernant les bases neuronales et les mécanismes impliqués dans l'intégration multisensorielle dans le système normale est d'une importance centrale car elle permettra d'examiner et de mieux comprendre comment le cerveau déficient pourrait bénéficier d'une réhabilitation avec la stimulation multisensorielle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Real-world objects are often endowed with features that violate Gestalt principles. In our experiment, we examined the neural correlates of binding under conflict conditions in terms of the binding-by-synchronization hypothesis. We presented an ambiguous stimulus ("diamond illusion") to 12 observers. The display consisted of four oblique gratings drifting within circular apertures. Its interpretation fluctuates between bound ("diamond") and unbound (component gratings) percepts. To model a situation in which Gestalt-driven analysis contradicts the perceptually explicit bound interpretation, we modified the original diamond (OD) stimulus by speeding up one grating. Using OD and modified diamond (MD) stimuli, we managed to dissociate the neural correlates of Gestalt-related (OD vs. MD) and perception-related (bound vs. unbound) factors. Their interaction was expected to reveal the neural networks synchronized specifically in the conflict situation. The synchronization topography of EEG was analyzed with the multivariate S-estimator technique. We found that good Gestalt (OD vs. MD) was associated with a higher posterior synchronization in the beta-gamma band. The effect of perception manifested itself as reciprocal modulations over the posterior and anterior regions (theta/beta-gamma bands). Specifically, higher posterior and lower anterior synchronization supported the bound percept, and the opposite was true for the unbound percept. The interaction showed that binding under challenging perceptual conditions is sustained by enhanced parietal synchronization. We argue that this distributed pattern of synchronization relates to the processes of multistage integration ranging from early grouping operations in the visual areas to maintaining representations in the frontal networks of sensory memory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multisensory interactions are a fundamental feature of brain organization. Principles governing multisensory processing have been established by varying stimulus location, timing and efficacy independently. Determining whether and how such principles operate when stimuli vary dynamically in their perceived distance (as when looming/receding) provides an assay for synergy among the above principles and also means for linking multisensory interactions between rudimentary stimuli with higher-order signals used for communication and motor planning. Human participants indicated movement of looming or receding versus static stimuli that were visual, auditory, or multisensory combinations while 160-channel EEG was recorded. Multivariate EEG analyses and distributed source estimations were performed. Nonlinear interactions between looming signals were observed at early poststimulus latencies (∼75 ms) in analyses of voltage waveforms, global field power, and source estimations. These looming-specific interactions positively correlated with reaction time facilitation, providing direct links between neural and performance metrics of multisensory integration. Statistical analyses of source estimations identified looming-specific interactions within the right claustrum/insula extending inferiorly into the amygdala and also within the bilateral cuneus extending into the inferior and lateral occipital cortices. Multisensory effects common to all conditions, regardless of perceived distance and congruity, followed (∼115 ms) and manifested as faster transition between temporally stable brain networks (vs summed responses to unisensory conditions). We demonstrate the early-latency, synergistic interplay between existing principles of multisensory interactions. Such findings change the manner in which to model multisensory interactions at neural and behavioral/perceptual levels. We also provide neurophysiologic backing for the notion that looming signals receive preferential treatment during perception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: The increasingly high hygienic standards characterizing westernized societies correlate with an increasingly high prevalence of allergic disease. Initially based on these observations, the hygiene hypothesis postulates that reduced microbial stimulation during infancy impairs the immune system development and increases the risk of allergy. Moreover, there is increasing evidence that the crosstalk existing between the intestine and the resident microbiota is crucial for gut homeostasis. In particular, bacterial colonization of the gut affects the integrity of the gut barrier and stimulates the development of the gut associated immune tissue, both phenomena being essential for the immune system to mount a controlled response to food antigens. Therefore, alterations in the microbial colonization process, by compromising the barrier homeostasis, may increase the risk of food allergy. In this context, antibiotic treatment, frequently prescribed during infancy, affects gut colonization by bacteria. However, little is known about the impact of alterations in the colonization process on the maturation of the gut barrier and on the immunological response to oral antigens. The objective of this work was to determine the impact of a commercial antibiotic preparation employed in pediatric settings on the gut barrier status at the critical period of the suckling/weaning transition and to evaluate the physiological consequences of this treatment in terms of immune response to food antigens. We established an antibiotic-treated suckling rat model relevant to the pediatric population in terms of type, dose and route of administration of the antibiotic and of changes in the patterns of microbial colonization. Oral tolerance to a novel luminal antigen (ovalbumin) was impaired when the antigen was introduced during antibiotic treatment. These results paralleled to alterations in the intestinal permeability to macromolecules and reduced intestinal expression of genes coding for the major histocomptatibility complex II molecules, which suggest a reduced capacity of antigen handling and presentation in the intestine of the antibiotic-treated animals. In addition, low luminal IgA levels and reduced intestinal expression of genes coding for antimicrobial proteins suggest that protection against pathogens was reduced under antibiotic treatment. In conclusion, we observed in suckling rats that treatment with abroad-spectrum antibiotic commonly used in pediatric practices reduced the capacity of the immune system to develop tolerance. The impact of the antibiotic treatment on the immune response to the antigen-was likely mediated by the alterations of the gut microbiota, through impairment in the mechanisms of antigen handling and presentation. This work reinforces the body of data supporting a key role of the intestinal microbiota modulating the risk of allergy development and leads us to propose that the introduction of new food antigens should be avoided during antibiotic treatment in infants. Résumé: L'augmentation du niveau d'hygiène caractérisant les sociétés occidentales semble être fortement corrélée avec l'augmentation des cas d'allergie dans ces pays. De cette observation est née l'hypothèse qu'une diminution des stimuli microbiens pendant l'enfance modifie le développement du système immunitaire augmentant ainsi le risque d'allergie. En ce sens, un nombre croissant de données indiquent que les interactions existant entre l'intestin et les bactéries résidantes sont cruciales pour l'équilibre du système. En effet, la présence de bactéries dans l'intestin affecte l'intégrité de sa fonction de barrière et stimule le développement du système immunitaire intestinal. Ces deux paramètres étant essentiels à la mise en place d'une réponse contrôlée vis à vis d'un antigène reçu oralement, toute modification du processus naturel de colonisation compromettant l'équilibre intestinal pourrait augmenter le risque d'allergie. Les traitements aux antibiotiques, fréquemment prescrits en pédiatrie, modifient de façon conséquente le processus de colonisation bactérienne. Cependant peu de données existent concernant l'impact d'une altération du processus de colonisation sur la maturation de la barrière intestinale et de la réponse immunitaire dirigée contre un antigène. L'objectif de ce travail était de déterminer l'impact d'un antibiotique commercial et employé en pédiatrie sur l'état de la barrière intestinale au moment critique du sevrage et d'évaluer les conséquences physiologiques d'un tel traitement sur la réponse immune à un antigène alimentaire. Nous avons mis en place un modèle de rats allaités, traités à l'antibiotique, le plus proche possible des pratiques pédiatriques, en terme de nature, dose et voie d'administration de l'antibiotique. Nous avons constaté que l'établissement de la tolérance orale à un nouvel antigène (l'ovalbumine) est altéré quand celui-ci est donné pour la première fois au cours du traitement antibiotique. Ces résultats coïncident avec une diminution de la perméabilité intestinale aux macromolécules, ainsi qu'avec une diminution de l'expression des gènes codant pour les molécules du complexe majeur d'histocomptatibilité de classe II, suggérant une modification de l'apprêtement et de la présentation de l'antigène au niveau intestinal chez les rats traités à l'antibiotique. De plus, un faible taux d'IgA et une diminution de l'expression des gènes codant pour des protéines antimicrobiennes, observés après l'administration d'antibiotique, laissent à penser que la protection contre un pathogène est diminuée lors d'un traitement antibiotique. En conclusion, nous avons observé qu'un traitement antibiotique à large spectre d'activité, couramment utilisé en pédiatrie, réduit la capacité d'induction de la tolérance orale chez le rat allaité. L'impact du traitement antibiotique sur la réponse immune semble induite par l'altération de la flore intestinale via son effet sur les mécanismes d'apprêtement et de présentation de l'antigène. Ce travail renforce l'ensemble des données existantes qui accorde à la flore intestinale un rôle clef dans la modulation du risque de développement d'allergie et nous amène à recommander d'éviter l'introduction d'un nouvel aliment lorsqu'un enfant est traité aux antibiotiques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans can recognize categories of environmental sounds, including vocalizations produced by humans and animals and the sounds of man-made objects. Most neuroimaging investigations of environmental sound discrimination have studied subjects while consciously perceiving and often explicitly recognizing the stimuli. Consequently, it remains unclear to what extent auditory object processing occurs independently of task demands and consciousness. Studies in animal models have shown that environmental sound discrimination at a neural level persists even in anesthetized preparations, whereas data from anesthetized humans has thus far provided null results. Here, we studied comatose patients as a model of environmental sound discrimination capacities during unconsciousness. We included 19 comatose patients treated with therapeutic hypothermia (TH) during the first 2 days of coma, while recording nineteen-channel electroencephalography (EEG). At the level of each individual patient, we applied a decoding algorithm to quantify the differential EEG responses to human vs. animal vocalizations as well as to sounds of living vocalizations vs. man-made objects. Discrimination between vocalization types was accurate in 11 patients and discrimination between sounds from living and man-made sources in 10 patients. At the group level, the results were significant only for the comparison between vocalization types. These results lay the groundwork for disentangling truly preferential activations in response to auditory categories, and the contribution of awareness to auditory category discrimination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early visual processing stages have been demonstrated to be impaired in schizophrenia patients and their first-degree relatives. The amplitude and topography of the P1 component of the visual evoked potential (VEP) are both affected; the latter of which indicates alterations in active brain networks between populations. At least two issues remain unresolved. First, the specificity of this deficit (and suitability as an endophenotype) has yet to be established, with evidence for impaired P1 responses in other clinical populations. Second, it remains unknown whether schizophrenia patients exhibit intact functional modulation of the P1 VEP component; an aspect that may assist in distinguishing effects specific to schizophrenia. We applied electrical neuroimaging analyses to VEPs from chronic schizophrenia patients and healthy controls in response to variation in the parafoveal spatial extent of stimuli. Healthy controls demonstrated robust modulation of the VEP strength and topography as a function of the spatial extent of stimuli during the P1 component. By contrast, no such modulations were evident at early latencies in the responses from patients with schizophrenia. Source estimations localized these deficits to the left precuneus and medial inferior parietal cortex. These findings provide insights on potential underlying low-level impairments in schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sepsis is among the leading causes of death worldwide and its incidence is increasing. Defined as the host response to infection, sepsis is a clinical syndrome considered to be the expression of a dysregulated immune reaction induced by danger signals that may lead to organ failure and death. Remarkable progresses have been made in our understanding of the molecular basis of host defenses in recent years. The host defense response is initiated by innate immune sensors of danger signals designated under the collective name of pattern-recognition receptors. Members of the family of microbial sensors include the complement system, the Toll-like receptors, the nucleotide-binding oligomerization domainlike receptors, the RIG-I-like helicases and the C-type lectin receptors. Ligand-activated pattern-recognition receptors kick off a cascade of intracellular events resulting in the expression of co-stimulatory molecules and release of effector molecules playing a fundamental role in the initiation of the innate and adaptive immune responses. Fine tuning of proinflammatory and anti-inflammatory reactions is critical for keeping the innate immune response in check. Overwhelming or dysregulated responses induced by infectious stimuli may have dramatic consequences for the host as shown by the profound derangements observed in sepsis. Unfortunately, translational research approaches aimed at the development of therapies targeting newly identified innate immune pathways have not held their promises. Indeed, all recent clinical investigations of adjunctive anti-sepsis treatments had little, if any, impact on morbidity and all-cause mortality of sepsis. Dissecting the mechanisms underlying the transition from infection to sepsis is essential for solving the sepsis enigma. Important components of the puzzle have already been identified, but the hunt must go on in the laboratory and at the bedside.