103 resultados para NO oxidation reaction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generation of fluids during metamorphism can significantly influence the fluid overpressure, and thus the fluid flow in metamorphic terrains. There is currently a large focus on developing numerical reactive transport models, and with it follows the need for analytical solutions to ensure correct numerical implementation. In this study, we derive both analytical and numerical solutions to reaction-induced fluid overpressure, coupled to temperature and fluid flow out of the reacting front. All equations are derived from basic principles of conservation of mass, energy and momentum. We focus on contact metamorphism, where devolatilization reactions are particularly important owing to high thermal fluxes allowing large volumes of fluids to be rapidly generated. The analytical solutions reveal three key factors involved in the pressure build-up: (i) The efficiency of the devolatilizing reaction front (pressure build-up) relative to fluid flow (pressure relaxation), (ii) the reaction temperature relative to the available heat in the system and (iii) the feedback of overpressure on the reaction temperature as a function of the Clapeyron slope. Finally, we apply the model to two geological case scenarios. In the first case, we investigate the influence of fluid overpressure on the movement of the reaction front and show that it can slow down significantly and may even be terminated owing to increased effective reaction temperature. In the second case, the model is applied to constrain the conditions for fracturing and inferred breccia pipe formation in organic-rich shales owing to methane generation in the contact aureole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME Le diagnostic d'infection tuberculeuse repose essentiellement sur le test tuberculinique (test de Mantoux). Cependant, le résultat de ce dernier est également influencé par d'autres facteurs, le plus important étant la vaccination par le Bacille Calmette-Guérin (BCG), interaction connue depuis de nombreuses années. Il est généralement admis que l'effet de la vaccination peut entraîner des réactions positives jusqu'à un diamètre d'induration de 15 mm. Au-delà, la positivité du test est en général attribuée à une primo-infection tuberculeuse. Peu d'études se sont réellement penchées sur le sujet. Chez le personnel de soins soumis à des Mantoux répétés, cette notion revêt une importance particulière pour interpréter correctement une réaction fortement positive en l'absence de facteurs de risque tuberculeux, dans un pays à faible endémie tuberculeuse. Notre étude a cherché à déterminer si le diamètre transversal de l'induration du Mantoux était un critère fiable pour distinguer une positivité associée à une infection tuberculeuse de celle associée à une ancienne vaccination. Elle s'est attachée à rechercher un seuil au-delà duquel l'infection tuberculeuse pourrait être considérée comme probable. Entre janvier 1991 et mars 1998, tous les nouveaux employés du CHUV ont été invités à recevoir un test tuberculinique à l'occasion de leur visite d'entrée à la Médecine du personnel. En cas de réponse négative, un deuxième test a été pratiqué une semaine plus tard, pour détecter un éventuel effet booster. Lors de la première visite, l'infirmière a rempli un questionnaire comprenant les données démographiques usuelles, des informations concernant les facteurs pouvant influencer la positivité du test, notamment les antécédents de vaccination par le BCG, les expositions à la tuberculose et l'existence d'antécédents d'infection tuberculeuse. Parmi les 5117 sujets inclus dans l'étude, nous avons trouvé que l'influence de la vaccination variait en fonction de l'âge. Chez les sujets de moins de 40 ans, la vaccination par le BCG était le prédicteur le plus important d'un Mantoux positif inférieur à 18 mm, de loin supérieur aux facteurs de risque habituels pour une infection tuberculeuse, eux aussi significatifs. L'effet du BCG était présent pour des réactions allant jusqu'à 20 mm. Pour les Mantoux supérieurs à 20 mm, l'odds ratio (OR) relatif au BCG demeure clairement élevé (supérieur à 3,4) bien que non significatif. Par contre, pour les employés âgés de plus de 40 ans, le BCG est un facteur prédictif pour les tests supérieurs à 10 mm (OR 2.4) mais n'est plus un facteur significatif pour une taille supérieure à 15 mm. Ces résultats montrent que l'interprétation d'un test tuberculinique même fortement positif, doit être faite avec prudence et discernement. En effet, notre étude démontre que chez les sujets vaccinés de moins de 40 ans, dans les zones de faible endémie tuberculeuse particulièrement en l'absence de facteurs de risque pour une infection tuberculeuse, un Mantoux positif jusqu'à 18 mm est dû, le plus probablement, à une ancienne vaccination par le BCG, plutôt qu'à une infection par M tuberczilosis. L'interprétation des Mantoux de taille inférieure à 18 mm et les Mantoux effectués chez des sujets de moins de 40 ans, doit prendre en compte l'existence d'un BCG antérieur. En conséquence, la mise en évidence d'une réaction de Mantoux fortement positive ne devrait pas conduire systématiquement à un traitement préventif. L'absence de spécificité du test Mantoux, utilisé pour le dépistage de la tuberculose depuis bientôt une centaine d'année, est un problème connu. Nous démontrons que la taille de l'induration ne peut pas être utilisée de façon fiable comme critère pour identifier une infection tuberculeuse chez une personne vaccinée avec le BCG, avec le risque de sui-traiter un nombre important de sujets. Dans notre étude, 21% des sujets avaient un Mantoux supérieur ou égal à 15 mm et auraient dû être traités selon les recommandations en vigueur en Suisse si l'on ne tenait pas compte du BCG antérieur. Des tests plus spécifiques sont actuellement à l'étude et permettront vraisemblablement, à l'avenir, de palier au problème de l'absence de spécificité du test de Mantoux. Abstract : Background. Previous bacillus Calmette-Guerin (BCG) vaccination can confound the results of a tuberculin skin test (TST). We sought to determine a cutoff diameter of TST induration beyond which the influence of BCG vaccination was negligible in evaluating potential Mycobacterium tuberculosis infection in a population of health care workers with a high vaccination rate and low incidence of tuberculosis. Methods. From 1991 through 1998, all new employees at the University Hospital of Lausanne, Switzerland, underwent a 2-step TST at entry visit. We also gathered information on demographic characteristics, along with factors commonly associated with tuberculin positivity, including previous BCG vaccination, history of latent M. tuberculosis infection, and predictors for M. tuberculosis infection. Results. Among the 5117 investigated subjects, we found that influence of BCG vaccination on TST results varied across categories of age (likelihood ratio test, 0.0001). Prior BCG vaccination had a strong influence on skin test results of mm in diameter among persons <40 years old, compared with the influence of factors predictive of M. tuberculosis infection. Prior latent M. tuberculosis infection and travel or employment in a country in which tuberculosis is endemic also had significant influences. Conclusions. Interpretation of TST reactions of mm among BCG-vaccinated persons <40 years of age must be done with caution in areas with a low incidence of tuberculosis. In such a population, except for persons who have never been vaccinated, TST reactions of ---518 mm are more likely to be the result of prior vaccination than infection and should not systematically lead to preventive treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microglial cells react early to a neurotoxic insult. However, the bioactive factors and the cell-cell interactions leading to microglial activation and finally to a neuroprotective or neurodegenerative outcome remain to be elucidated. Therefore, we analyzed the microglial reaction induced by methylmercury (MeHgCl) using cell cultures of different complexity. Isolated microglia were found to be directly activated by MeHgCl (10(-10) to 10(-6) M), as indicated by process retraction, enhanced lectin staining, and cluster formation. An association of MeHgCl-induced microglial clusters with astrocytes and neurons was observed in three-dimensional cultures. Close proximity was found between the clusters of lectin-stained microglia and astrocytes immunostained for glial fibrillary acidic protein (GFAP), which may facilitate interactions between astrocytes and reactive microglia. In contrast, immunoreactivity for microtubule-associated protein (MAP-2), a neuronal marker, was absent in the vicinity of the microglial clusters. Interactions between astrocytes and microglia were studied in cocultures treated for 10 days with MeHgCl. Interleukin-6 release was increased at 10(-7) M of MeHgCl, whereas it was decreased when each of these two cell types was cultured separately. Moreover, addition of IL-6 to three-dimensional brain cell cultures treated with 3 x 10(-7) M of MeHgCl prevented the decrease in immunostaining of the neuronal markers MAP-2 and neurofilament-M. IL-6 administered to three-dimensional cultures in the absence of MeHgCl caused astrogliosis, as indicated by increased GFAP immunoreactivity. Altogether, these results show that microglial cells are directly activated by MeHgCl and that the interaction between activated microglia and astrocytes can increase local IL-6 release, which may cause astrocyte reactivity and neuroprotection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary Polyhydroxyalkanoates (PHAs) represent a family of polyesters naturally synthesized by a wide variety of bacteria. Through their thermoplastic and elastomeric qualities, together with their biodegradable and renewable properties, they are predicted to be a good alternative to the petroleum- derived plastics. Nevertheless, as PHA production costs using bacteria fermentation are still too high, PHA synthesis within eukaryotic systems, such as plants, has been elaborated. Although the costs were then efficiently lowered, the yield of PHAs produced remained low. In this study, Saccharomyces cerevisae has been used as another eukaryotic model in order to reveal the steps which limit PHA production. These cells express the PHA synthase of Pseudomonas aeruginosa and the PHAs obtained were analyzed to understand the flux of fatty acids towards and through the peroxisomal β-oxidation core cycle, generating the main substrate of the PHA synthase. When S. cerevisiae wild-type cells are grown in a media containing glucose as carbon source as well as fatty acids, the PHA monomer composition is largely influenced by the nature of the external fatty acid used. Thus, even-chain PHA monomers are generated from oleic acid (18:1Δ9cis) and odd- chain PHA monomers are generated from heptadecenoic acid (17:1Δ. 10 cis). Moreover, PHA synthesis is dependent on the first two enzymes of the 0-oxidation core cycle, the acyl-CoA oxidase and the multifunctional enzyme enoyl-CoA hydratase II / R-3-hydroxyacyl-CoA dehydrogenase. S. cerevisiae mutant cells growing on oleic or heptadecenoic acid and deficient in either the R-3- hydroxyacyl-CoA dehydrogenase or in the 3-ketothiolase activity, the last β-oxidation cycle steps, surprisingly contained PHAs of predominantly even-chain monomers. This is also noticed in wild- type and mutants grown on glucose or raffinose, indicating that the substrate used for PHA synthesis is generated from the degradation of intracellular short- and medium-chain fatty acids by the 3- oxidation cycle. Inhibition of fatty acid biosynthesis by cerulenin blocks the synthesis of PHAs from intracellular fatty acids but still enables the use of extracellular fatty acids for polymer production. Together, these results uncovered the existence of a substantial futile cycle whereby short- and medium-chain intermediates of the cytoplasmic fatty acid biosynthetic pathway are directed towards the peroxisomal β-oxidation pathway. In this thesis, no increase of the yield of PHA produced could be obtained. But the PHA synthesis confirmed the carbon flux into and through the β-oxidation core cycle and unveiled the existence of novel mechanisms. It is thus a good tool to study in vivo the flux of carbons in S. cerevisiae cells. Résumé Les polyhydroxyalkanoates (PHAs) sont une famille de polyesters naturellement synthétisés par un grand nombre de bactéries. Ayant des propriétés de thermoplastiques, d'élastomères et étant des ressources biodégradables et renouvelables, les PHAs représentent une bonne alternative aux plastiques dérivés du pétrole. Pour pallier aux coûts considérables de la production de PHAs par fermentation bactérienne, la synthèse de PHAs par des systèmes eucaryotes telles les plantes a été élaborée. Les coûts ont ainsi efficacement été diminués, mais le rendement de PHAs produits reste faible. Dans cette étude, Saccharomyces cerevisiae a été utilisé comme autre modèle eucaryote pour révéler les étapes limitantes de la production de PHAs. Les PHAs obtenus dans les cellules exprimant la F'HA synthase de Pseudomonas aeruginosa ont été analysés afin de comprendre le flux d'acides gras vers et à travers le cycle péroxisomal de la β-oxidation, principal producteur du substrat de la PHA synthase. Lorsque la souche S. cerevisiae de type sauvage se développe dans un milieu contenant du glucose et des acides gras, la composition des monomères de PHAs est influencée par la nature des acides gras extracellulaires. Ainsi, les monomères pairs sont générés par l'acide oléique (18:1Δ9cis), tandis que les impairs le sont par l'acide heptadécénoïque (17:1Δ10cis). La synthèse de PHAs est dépendante des deux premières enzymes de la β-oxidation; l'acyl-CoA oxidase et l'enzyme multifonctionnelle enoyl-CoA hydratase II / R-3-hydroxyacyl-CoA déshydrogénase. Les souches mutantes ne possédant pas les activités de la R-3-hydroxyacyl-CoA déshydrogénase ou de la 3- ketothiolase contiennent, en présence d'acide oléique ou heptadécénoïque, des PHAs composés essentiellement de monomères pairs. Cela a également été observé en présence de glucose ou de raffinose uniquement. Le substrat utilisé pour la synthèse de PHAs a ainsi été généré par la dégradation d'acides gras intracellulaires à chaîne courte et moyenne via le cycle de la β-oxidation. L'inhibition de la synthèse d'acides gras par la cérulénine a bloqué la synthèse de PHAs par les acides gras internes. Ces résultats ont révélés l'existence d'un cycle futile par lequel des intermédiaires à chaîne courte et moyenne de la synthèse cytoplasmique d'acides gras sont dirigés vers le cycle péroxisomal de la β-oxidation. Dans cette étude, le rendement de PHAs produits reste inchangé, mais l'analyse des PHAs permet de confirmer le flux de carbones vers et à travers le cycle péroxisomal de la β-oxidation et l'existence de nouveaux méchanismes a été dévoilée. Cette synthèse s'avère être un bon outil pour étudier in vivo le flux de carbones dans les cellules de S. cerevisiae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to examine whether lipid oxidation predominates during 3 h of postexercise recovery in high-intensity interval exercise as compared with moderate-intensity continuous exercise on a cycle ergometer in fit young men (n = 12; 24.6 +/- 0.6 yr). METHODS: The energy substrate partitioning was evaluated during and after high-intensity submaximal interval exercise (INT, 1-min intervals at 80% of maximal aerobic power output [Wmax] with an intervening 1 min of active recovery at 40% Wmax) and 60-min moderate-intensity continuous exercise at 45% of maximal oxygen uptake (C45%) as well as a time-matched resting control trial (CON). Exercise bouts were matched for mechanical work output. RESULTS: During exercise, a significantly greater contribution of CHO and a lower contribution of lipid to energy expenditure were found in INT (512.7 +/- 26.6 and 41.0 +/- 14.0 kcal, respectively) than in C45% (406.3 +/- 21.2 and 170.3 +/- 24.0 kcal, respectively; P < 0.001) despite similar overall energy expenditure in both exercise trials (P = 0.13). During recovery, there were no significant differences between INT and C45% in substrate turnover and oxidation (P > 0.05). On the other hand, the mean contribution of lipids to energy yield was significantly higher after exercise trials (C45% = 61.3 +/- 4.2 kcal; INT = 66.7 +/- 4.7 kcal) than after CON (51.5 +/- 3.4 kcal; P < 0.05). CONCLUSIONS: These findings show that lipid oxidation during postexercise recovery was increased by a similar amount on two isoenergetic exercise bouts of different forms and intensities compared with the time-matched no-exercise control trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vertebrates, the interconversion of lactate and pyruvate is catalyzed by the enzyme lactate dehydrogenase. Two distinct subunits combine to form the five tetrameric isoenzymes of lactate dehydrogenase. The LDH-5 subunit (muscle type) has higher maximal velocity (Vmax) and is present in glycolytic tissues, favoring the formation of lactate from pyruvate. The LDH-1 subunit (heart type) is inhibited by pyruvate and therefore preferentially drives the reaction toward the production of pyruvate. There is mounting evidence indicating that during activation the brain resorts to the transient glycolytic processing of glucose. Indeed, transient lactate formation during physiological stimulation has been shown by 1H-magnetic resonance spectroscopy. However, since whole-brain arteriovenous studies under basal conditions indicate a virtually complete oxidation of glucose, the vast proportion of the lactate transiently formed during activation is likely to be oxidized. These in vivo data suggest that lactate may be formed in certain cells and oxidized in others. We therefore set out to determine whether the two isoforms of lactate dehydrogenase are localized to selective cell types in the human brain. We report here the production and characterization of two rat antisera, specific for the LDH-5 and LDH-1 subunits of lactate dehydrogenase, respectively. Immunohistochemical, immunodot, and western-blot analyses show that these antisera specifically recognize their homologous antigens. Immunohistochemistry on 10 control cases demonstrated a differential cellular distribution between both subunits in the hippocampus and occipital cortex: neurons are exclusively stained with the anti-LDH1 subunit while astrocytes are stained by both antibodies. These observations support the notion of a regulated lactate flux between astrocytes and neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological studies have demonstrated that exposure to fine particles is associated to adverse health effects, including cancer, respiratory and cardiovascular diseases. However, mechanisms by which particles induce health effects remain unclear. According to one of the most investigated hypotheses, particles cause adverse effects through the production of reactive oxygen species (ROS), which are very hazardous compounds able to attack directly biological structures, including the DNA strand or the lipid bilayer of the cells. If the defense mechanisms, constituted of antioxidants, are not able to counter ROS, then these compounds will cause in the body a range of oxidation reactions called "oxidative stress". The aim of the present research project was to better understand mechanisms by which exposure to fine particles induces oxidative stress. The first point of this project was to check whether exposure to high levels of fine particles is directly linked to oxidative stress, and whether this oxidative stress is accompanied by the activation of the defense mechanisms (antioxidants). The second point was to study the role played by the particle surface characteristics in the oxidative stress process. For that purpose, a study was conducted in bus depots with the participation of 40 mechanics. First, occupational exposure to particles (PM4) and to other pollutants (NOx, O3) was measured over a two-day period. Then, urine samples of mechanics were collected in order to measure levels of 8-hydroxy-2'-deoxyguanosine (8OHdG) and antioxidants. 8OHdG is a molecule formed by the oxidation of DNA and allowing to assess the oxidative stress status of the mechanics. Finally, particles were collected on filters, and functional groups located on the particle surface were analyzed in the laboratory using a Knudsen flow reactor. This technique allows not only to quantify functional groups on the particle surface, but also to measure the reaction kinetics. Results obtained during the field campaign in bus depots showed that mechanics were exposed to rather low levels of PM4 (20-85 μg/m3) and of pollutants (NOx: 100-1000 ppb; O3: <15 ppb). However, despite this low exposure, urinary levels of the oxidative stress biomarker (8OHdG) increased significantly for non-smoking workers over a two-day period of shift. This oxidative stress was accompanied by an increase of antioxidants, indicating the activation of defense mechanisms. On the other hand, the analysis of functional groups on the particle surface showed important differences, depending on the workplace, the date and the activities of workers. The particle surface contained simultaneously antagonistic functional groups which did not undergo internal reactions (such as acids and bases), and was usually characterized by a high density of carbonyl functions and a low density of acidic sites. Reaction kinetics measured using the Knudsen flow reactor pointed out fast reactions of oxidizable groups and slow reactions of acidic sites. Several exposure parameters were significantly correlated with the increase of the oxidative stress status: the presence of acidic sites, carbonyl functions and oxidizable groups on the particle surface; reaction kinetics of functional groups on the particle surface; particulate iron and copper concentrations; and NOx concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three novel members of the Xenopus nuclear hormone receptor superfamily have been cloned. They are related to each other and similar to the group of receptors that includes those for thyroid hormones, retinoids, and vitamin D3. Their transcriptional activity is regulated by agents causing peroxisome proliferation and carcinogenesis in rodent liver. All three Xenopus receptors activate the promoter of the acyl coenzyme A oxidase gene, which encodes the key enzyme of peroxisomal fatty acid beta-oxidation, via a cognate response element that has been identified. Therefore, peroxisome proliferators may exert their hypolipidemic effects through these receptors, which stimulate the peroxisomal degradation of fatty acids. Finally, the multiplicity of these receptors suggests the existence of hitherto unknown cellular signaling pathways for xenobiotics and putative endogenous ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Nonspecific inflammatory reactions characterized by local tenderness, fever, and flu-like discomfort have been seen in patients undergoing endoluminal graft placement in the abdominal aorta or the femoral arteries. We undertook a study to assess the clinical and laboratory parameters of this inflammation. METHODS: Ten patients with femoropopliteal artery (n = 9) or aortic (n = 1) lesions were treated with EndoPro System 1 stent-grafts made of nitinol alloy and covered with a polyester (Dacron) fabric. Eleven patients implanted with a bare nitinol stent served as the control group. RESULTS: In the stent-graft group, four patients showed clinical signs of acute inflammation manifested by fever and local tenderness. Three of these patients suffered thrombosis of the stent-grafts during the first month of follow-up. Plasma levels of interleukin-1 beta and interleukin-6 in all stent-graft patients were markedly increased 1 day after intervention (7.3 +/- 2.8 versus 90.2 +/- 34.1 pg/mL and 15.6 +/- 5.8 versus 175.5 +/- 66.3 pg/mL, respectively; p < 0.01). This was followed by an increase in fibrinogen (3.0 +/- 0.2 versus 5.0 +/- 0.2 g/L; p < 0.05) and C-reactive protein (14.6 +/- 3.3 versus 77.5 +/- 15.0 mg/L; p < 0.01) at 1 week. No direct correlation between the inflammatory markers and symptoms could be found. In vitro analysis showed that individual components of the stent-graft did not activate human neutrophils, whereas the intact stent-graft itself induced a marked neutrophil activation. CONCLUSIONS: The component of the self-expanding stent-graft responsible for the nonspecific inflammatory reaction was not identified in this study. It is likely that the stent-graft itself or some as yet unrecognized element of the device other than the Dacron fabric or metal alloy may be a potent in vivo inducer of cytokine reaction by neutrophils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fungus Aspergillus nidulans contains both a mitochondrial and peroxisomal ß-oxidation pathway. This work was aimed at studying the influence of mutations in the foxA gene, encoding a peroxisomal multifunctional protein, or in the scdA/echA genes, encoding a mitochondrial short-chain dehydrogenase and an enoyl-CoA hydratase, respectively, on the carbon flux to the peroxisomal ß-oxidation pathway. A. nidulans transformed with a peroxisomal polyhydroxyalkanoate (PHA) synthase produced PHA from the polymerization of 3-hydroxyacyl-CoA intermediates derived from the peroxisomal ß-oxidation of external fatty acids. PHA produced from erucic acid or heptadecanoic acid contained a broad spectrum of monomers, ranging from 5 to 14 carbons, revealing that the peroxisomal ß-oxidation cycle can handle both long and short-chain intermediates. While the ∆foxA mutant grown on erucic acid or oleic acid synthesized 10-fold less PHA compared to wild type, the same mutant grown on octanoic acid or heptanoic acid produced 3- to 6-fold more PHA. Thus, while FoxA has an important contribution to the degradation of long-chain fatty acids, the flux of short-chain fatty acids to peroxisomal ß-oxidation is actually enhanced in its absence. While no change in PHA was observed in the ∆scdA∆echA mutant grown on erucic acid or oleic acid compared to wild type, there was a 2- to 4-fold increased synthesis of PHA in ∆scdA∆echA cells grown in octanoic acid or heptanoic acid. These results reveal that a compensatory mechanism exists in A. nidulans that increases the flux of short-chain fatty acids towards the peroxisomal ß-oxidation cycle when the mitochondrial ß-oxidation pathway is defective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short-chain-length-medium-chain-length polyhydroxyalkanoates were synthesized in Saccharomyces cerevisiae from intermediates of the beta-oxidation cycle by expressing the polyhydroxyalkanoate synthases from Aeromonas caviae and Ralstonia eutropha in the peroxisomes. The quantity of polymer produced was increased by using a mutant of the beta-oxidation-associated multifunctional enzyme with low dehydrogenase activity toward R-3-hydroxybutyryl coenzyme A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Great effort is put into developing reliable, predictive, high-throughput, and low-cost screening approaches for the toxicity evaluation of ambient and manufactured nanoparticles (NP). These tests often consider oxidative reactivity, as oxidative stress is a well-documented pathway in particle toxicology. Based on a panel of six carbonaceous and five metal/metal oxide (Me/MeOx) nanoparticles, we: (i) compared the specifications (linearity, detection limits, repeatability) of three acellular reactivity tests using either dithiothreitol (DTT assay), dichlorofluorescein (DCFH assay), or ascorbic acid (AA-assay) as the reducing agent; and (ii) evaluated which physicochemical properties were important for explaining the observed reactivity. The selected AA assay was found to be neither sensitive nor robust enough to be retained. For the other tests, the surface properties of carbonaceous NP were of utmost importance for explaining their reactivity. In particular, the presence of "strongly reducing" surface functions explained most of its DCFH reactivity and a large part of its DTT reactivity. For the selected Me/MeOx, a different picture emerged. Whereas all particles were able to oxidize DCFH, dissolution and complexation processes could additionally influence the measured reactivity, as observed using the DTT assay. This study suggests that a combination of the DTT and DCFH assays provides complementary information relative to the quantification of the oxidative capacity of NP.