85 resultados para NEUTROPHIL COLLAGENASE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUME L'infiltration tissulaire par les cellules leucémiques, responsable de leucostase, est une complication grave de la leucémie aiguë hyperleucocytaire. Elle peut entraîner une détresse respiratoire et des troubles neurologiques de mauvais pronostic. Pendant longtemps, la prolifération intravasculaire des cellules leucémiques et l'augmentation de la viscosité étaient considérées comme en étant responsables, et le traitement reposait sur une cytoréduction rapide par leucaphérèse. Actuellement, l'interaction entre les cellules leucémiques et l'endothélium vasculaire est plutôt considérée comme la cause de ce phénomène. En effet, les cellules leucémiques peuvent induire l'expression des sélectives endothéliales. Les sélectives initient le roulement des leucocytes avant leur adhésion ferme et leur migration dans les tissus. Elles reconnaissent des ligands spécifiques exprimés à la surface des leucocytes, comme PSGL-1 qui est un ligand commun des sélectives. Cependant, plusieurs études suggèrent que d'autres ligands de la E-sélective soient exprimés par les leucocytes. L'interaction des cellules leucémiques avec la E- et la P- sélective est corrélée avec l'expression de la molécule CLA, reconnue par l'anticorps HECA-452. L'immunopurification des ligands de la E-sélective avec cet anticorps a permis d'isoler, des cellules THP1 et U937, une protéine de 170 kDa, ainsi qu'une autre protéine de 250 kDa des cellules U937, en plus de PSGL-1. Ces protéines ont également été purifiées avec la protéine de fusion Esélective/IgM. CD43 et CD44 semblent être des ligands de la E-sélective sur certaines lignées, mais leur interaction avec la E-sélective n'est pas toujours retrouvée. De plus, cette étude a permis de montrer que ces ligands de la E-sélectiné sont exprimés dans les rafts lipidiques, comme PSGL-1 et la L-sélective des neutrophiles. Ces deux nouveaux ligands sont en cours d'identification. Ils pourraient représenter une nouvelle cible dans le traitement de la leucostase, mais aussi lors d'inflammation chronique ou de métastases. ABSTRACT Leukostasis is alife-threatening complication of acute leukemia, that results from tissue infiltration of leukemic blasts that migrate out of blood flow and interfere with normal tissue functions. The process leading to these complications has been attributed to the overcrowding of leukemic cells in the microcirculation. However, leukostasis more likely results from the adhesive interactions between leukemic blasts and the endothelium. Activated endothelium express adhesion molecules like P- and E-selectin, and leukemic cells themselves can induce the expression of E-selectin on endothelial cells. Selectins are essential in initiating the rolling of intravascular cells on endothelium before firm adhesion and transmigration outside of blood vessels. They interact with specific ligands on leukocyte cell surface. P-selectin glycoprotein ligand-1 (PSGL-1) is common ligand for E-, P- and L-selectin. Recently, CD44, ESL-1 and CD44 were shown to cooperate. ìn supporting mouse neutrophil adhesion to E-selectin. Other E-selectin ligands remain to be identified in humans. Leukemic cells were screened in order to characterize human E-selectin ligands. The interactions of E- and P-selectin correlate with the expression of CLA epitope. Therefore, HECA-452 mAb that recognizes CLA was used for immunopurification. Aglycoprotein of 170 kDa was purified from THP1 and U937 cells, and a protein of 250 kDa from U937 cells. These proteins were also purified by affinity binding to E-selectin/IgM chimera. PSGL-1 bound to E-selectin as expected, but CD43 and CD44 were not always adsorbed on E-selectin chimera, depending on cell types. E-selectin ligands were also shown to be in lipid rafts in leukemic cells, like PSGL-1 and L-selectin in human neutrophils. The 170 kDa protein has been sequenced, and three interesting ligands were among the candidates: ESL-1, CD44 and podocalyxin. These ligands are under investigation, and may represent a new therapeutic target in leukostasis, inflammation or cancer metastasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The exact pathogenesis of the pediatric disorder periodic fever, aphthous stomatitis, pharyngitis, cervical adenitis (PFAPA) syndrome is unknown. OBJECTIVES: We hypothesized that PFAPA might be due to dysregulated monocyte IL-1β production linked to genetic variants in proinflammatory genes. METHODS: Fifteen patients with PFAPA syndrome were studied during and outside a febrile episode. Hematologic profile, inflammatory markers, and cytokine levels were measured in the blood. The capacity of LPS-stimulated PBMCs and monocytes to secrete IL-1β was assessed by using ELISA, and active IL-1β secretion was visualized by means of Western blotting. Real-time quantitative PCR was performed to assess cytokine gene expression. DNA was screened for variants of the MEFV, TNFRSF1A, MVK, and NLRP3 genes in a total of 57 patients with PFAPA syndrome. RESULTS: During a febrile attack, patients with PFAPA syndrome revealed significantly increased neutrophil counts, erythrocyte sedimentation rates, and C-reactive protein, serum amyloid A, myeloid-related protein 8/14, and S100A12 levels compared with those seen outside attacks. Stimulated PBMCs secreted significantly more IL-1β during an attack (during a febrile episode, 575 ± 88 pg/mL; outside a febrile episode, 235 ± 56 pg/mL; P < .001), and this was in the mature active p17 form. IL-1β secretion was inhibited by ZYVAD, a caspase inhibitor. Similar results were found for stimulated monocytes (during a febrile episode, 743 ± 183 pg/mL; outside a febrile episode, 227 ± 92 pg/mL; P < .05). Genotyping identified variants in 15 of 57 patients, with 12 NLRP3 variants, 1 TNFRSF1A variant, 4 MEFV variants, and 1 MVK variant. CONCLUSION: Our data strongly suggest that IL-1β monocyte production is dysregulated in patients with PFAPA syndrome. Approximately 20% of them were found to have NLRP3 variants, suggesting that inflammasome-related genes might be involved in this autoinflammatory syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent advances have stimulated new interest in the area of crystal arthritis, as microcrystals can be considered to be endogenous "danger signals" and are potent stimulators of immune as well as non-immune cells. The best known microcrystals include urate (MSU), and calcium pyrophosphate (CPP) crystals, associated with gout and pseudogout, respectively. Acute inflammation is the hallmark of the acute tissue reaction to crystals in both gout and pseudogout. The mechanisms leading to joint inflammation in these diseases involve first crystal formation and subsequent coating with serum proteins. Crystals can then interact with plasma cell membrane, either directly or via membrane receptors, leading to NLRP3 activation, proteolytic cleavage and maturation of pro-interleukin-1β (pro-IL1β) and secretion of mature IL1β. Once released, this cytokine orchestrates a series of events leading to endothelial cell activation and neutrophil recruitment. Ultimately, gout resolution involves several mechanisms including monocyte differentiation into macrophage, clearance of apoptotic neutrophils by macrophages, production of Transforming Growth Factor (TGF-β) and modification of protein coating on the crystal surface. This review will examine these different steps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury; however, its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explore the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2h of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute proinflammatory response (TNF-α, MIP-1α/CCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and a more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6h of reperfusion and peaking at 24h). Mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), and mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular metabolism is emerging as a potential fate determinant in cancer and stem cell biology, constituting a crucial regulator of the hematopoietic stem cell (HSC) pool [1-4]. The extremely low oxygen tension in the HSC microenvironment of the adult bone marrow forces HSCs into a low metabolic profile that is thought to enable their maintenance by protecting them from reactive oxygen species (ROS). Although HSC quiescence has for long been associated with low mitochondrial activity, as testified by the low rhodamine stain that marks primitive HSCs, we hypothesized that mitochondrial activation could be an HSC fate determinant in its own right. We thus set to investigate the implications of pharmacologically modulating mitochondrial activity during bone marrow transplantation, and have found that forcing mitochondrial activation in the post-transplant period dramatically increases survival. Specifically, we examined the mitochondrial content and activation profile of each murine hematopoietic stem and progenitor compartment. Long-term-HSCs (LT-HSC, Lin-cKit+Sca1+ (LKS) CD150+CD34-), short-term-HSCs (ST-HSC, LKS+150+34+), multipotent progenitors (MPPs, LKS+150-) and committed progenitors (PROG, Lin-cKit+Sca1-) display distinct mitochondrial profiles, with both mitochondrial content and activity increasing with differentiation. Indeed, we found that overall function of the hematopoietic progenitor and stem cell compartment can be resolved by mitochondrial activity alone, as illustrated by the fact that low mitochondrial activity LKS cells (TMRM low) can provide efficient long-term engraftment, while high mitochondrial activity LKS cells (TMRM high) cannot engraft in lethally irradiated mice. Moreover, low mitochondrial activity can equally predict efficiency of engraftment within the LT-HSC and ST-HSC compartments, opening the field to a novel method of discriminating a population of transitioning ST-HSCs that retain long-term engraftment capacity. Based on previous experience that a high-fat bone marrow microenvironment depletes short-term hematopoietic progenitors while conserving their long-term counterparts [5], we set to measure HSC mitochondrial activation in high-fat diet fed mice, known to decrease metabolic rate on a per cell basis through excess insulin/IGF-1 production. Congruently, we found lower mitochondrial activation as assessed by flow cytometry and RT-PCR analysis as well as a depletion of the short-term progenitor compartment in high fat versus control chow diet fed mice. We then tested the effects of a mitochondrial activator known to counteract the negative effects of high fat diet. We first analyzed the in vitro effect on HSC cell cycle kinetics, where no significant change in proliferation or division time was found. However, HSCs responded to the mitochondrial activator by increasing asynchrony, a behavior that is thought to directly correlate with asymmetric division [6]. As opposed to high-fat diet fed mice, mice fed with the mitochondrial activator showed an increase in ST-HSCs, while all the other hematopoietic compartments were comparable to mice fed on control diet. Given the dependency on short-term progenitors to rapidly reconstitute hematopoiesis following bone marrow transplantation, we tested the effect of pharmacological mitochondrial activation on the recovery of mice transplanted with a limiting HSC dose. Survival 3 weeks post-transplant was 80% in the treated group compared to 0% in the control group, as predicted by faster recovery of platelet and neutrophil counts. In conclusion, we have found that mitochondrial activation regulates the long-term to short-term HSC transition, unraveling mitochondrial modulation as a valuable drug target for post-transplant therapy. Identification of molecular pathways accountable for the metabolically mediated fate switch is currently ongoing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late treatment of invasive candidiasis (IC) results in severe complications and high mortality. New tools are needed for early diagnosis. We conducted a retrospective study to assess the diagnostic utility of mannan antigenemia (Mn) and antimannan antibodies (anti-Mn) in neutropenic cancer patients at high risk for candidiasis. Twenty-eight patients with IC (based on European Organization for Research and Treatment of Cancer and Mycoses Study Group definitions) and 25 controls were studied. Mn and anti-Mn were positive (> or = 0.25 ng/mL and > or = 5 AU/mL, respectively) in 25/28 (89%) patients with candidiasis and in 4/25 (16%) controls: sensitivity, 89%; specificity, 84%; positive predictive value, 86%; negative predictive value, 88%. In patients with hepatosplenic lesions, assessing Mn/anti-Mn shortened the median time of diagnosis of candidiasis when compared with imaging (9 versus 25 days after fever onset as first sign of infection; P < 0.001). Candidiasis was diagnosed before neutrophil recovery in 78% and 11% of cases with Mn/anti-Mn and radiology, respectively (P < 0.001). Mn and anti-Mn may be useful for early noninvasive diagnosis of IC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: Gouty arthritis patients for whom non-steroidal anti-inflammatory drugs and colchicine are inappropriate have limited treatment options. Canakinumab, an anti-interleukin-1β monoclonal antibody, may be an option for such patients. The authors assessed the efficacy/safety of one dose of canakinumab 150 mg (n=230) or triamcinolone acetonide (TA) 40 mg (n=226) at baseline and upon a new flare in frequently flaring patients contraindicated for, intolerant of, or unresponsive to non-steroidal anti-inflammatory drugs and/or colchicine. Core study co-primary endpoints were pain intensity 72 h postdose (0-100 mm visual analogue scale and time to first new flare. METHODS: Two 12-week randomised, multicentre, active-controlled, double-blind, parallel-group core studies with double-blind 12-week extensions (response in acute flare and in prevention of episodes of re-flare in gout (β-RELIEVED and β-RELIEVED-II)). RESULTS: 82.6% patients had comorbidities. Mean 72-h visual analogue scale pain score was lower with canakinumab (25.0 mm vs 35.7 mm; difference, -10.7 mm; 95% CI -15.4 to -6.0; p<0.0001), with significantly less physician-assessed tenderness and swelling (ORs=2.16 and 2.74; both p≤0.01) versus TA. Canakinumab significantly delayed time to first new flare, reduced the risk of new flares by 62% versus TA (HR: 0.38; 95% CI 0.26 to 0.57) in the core studies and by 56% (HR: 0.44; 95% CI 0.32 to 0.60; both p≤0.0001) over the entire 24-week period, and decreased median C-reactive protein levels (p≤0.0001 at 72 h and 7 days). Over the 24-week period, adverse events were reported in 66.2% (canakinumab) and 52.8% (TA) and serious adverse events were reported in 8.0% (canakinumab) and 3.5% (TA) of patients. Adverse events reported more frequently with canakinumab included infections, low neutrophil count and low platelet count. CONCLUSION: Canakinumab provided significant pain and inflammation relief and reduced the risk of new flares in these patients with acute gouty arthritis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Owing to increasing resistance and the limited arsenal of new antibiotics, especially against Gram-negative pathogens, carefully designed antibiotic regimens are obligatory for febrile neutropenic patients, along with effective infection control. The Expert Group of the 4(th) European Conference on Infections in Leukemia has developed guidelines for initial empirical therapy in febrile neutropenic patients, based on: i) the local resistance epidemiology; and ii) the patient's risk factors for resistant bacteria and for a complicated clinical course. An 'escalation' approach, avoiding empirical carbapenems and combinations, should be employed in patients without particular risk factors. A 'de-escalation' approach, with initial broad-spectrum antibiotics or combinations, should be used only in those patients with: i) known prior colonization or infection with resistant pathogens; or ii) complicated presentation; or iii) in centers where resistant pathogens are prevalent at the onset of febrile neutropenia. In the latter case, infection control and antibiotic stewardship also need urgent review. Modification of the initial regimen at 72-96 h should be based on the patient's clinical course and the microbiological results. Discontinuation of antibiotics after 72 h or later should be considered in neutropenic patients with fever of unknown origin who are hemodynamically stable since presentation and afebrile for at least 48 h, irrespective of neutrophil count and expected duration of neutropenia. This strategy aims to minimize the collateral damage associated with antibiotic overuse, and the further selection of resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARY Pulmonary Pulmonary disease is the primary cause of morbidity and mortality in cystic fibrosis patients (CF). Airways of CF patients are early colonized by various bacteriae, and an intense inflammatory response participates to airways destruction. Accumulation of neutrophils releasing proteolytic enzymes and free radicals induce progressive lung tissue destruction in CF. Among several inflammatory mediators implicated in this process, chemotactic factors such as leukotriene B4 (LTB4), product of arachidonic omega-6 polyunsaturated fatty acid (PUFA), plays an important role. Many anti-inflammatory therapies including corticosteroids, ibuprofen, macrolides, antioxidants and antiproteinases have been proposed in CF over the last 20 years. In complement to these various approaches, dietary supplementation with polyunsaturated fatty acids (PUFA) omega-3, known to favor the synthesis of less inflammatory leukotriene B5 (LTB5), could also represent a potential. therapy. The objective of this thesis was to assess the impact of this nutritional approach on several CF neutrophil functions. In addition, we have also examined the influence of this approach on various clinical parameters, to assess the feasibility of future studies specifically oriented towards clinical effects. To that endeavour, a high performance liquid chromatography method has been developed and validated, allowing the simultaneous determination of LTB4 and LTB5 produced by stimulated human polymorphonuclear leukocytes. This method was applied for the analysis of samples collected from CF patients taking part to a double-blind, randomized, crossover placebo-controlled clinical trial aiming at evaluating in these patients the immunomodulatary effect of a liquid supplementation enriched in omega-3 PUFA in CF. This study has shown that omega-3 PUFA are incorporated in CF neutrophil membranes and results into a modulation of leucotrienes B production, as testified by a three fold decrease in LTB4/LTB5 ratio after omega-3 PUFA supplementation. However, no clinical improvement was observed upon omega-3 supplementation, very reproducible results observed allow to be optimistic for a future larger trial focused on clinical outcomes. In conclusion, even if the results show that omega-3 PUFA are absorbed by CF patients and that the subsequent decrease in LTB4/LTB5 ratio suggests that in such conditions, neutrophils may produce less pro-inflammatory mediators, the clinical relevance of those observations remains to be demonstrated. Future multicentric studies focusing on clinical endpoints are still warranted to determine the importance of omega-3 PUFA in CF therapeutics. RÉSUMÉ Les patients atteints de mucoviscidose (patients CF) souffrent d'infections pulmonaires récurrentes. Celles-ci provoquent un afflux permanent de neutrophiles dans le poumon, neutrophiles qui libèrent des enzymes protéolytiques et des radicaux libres responsables à long terme de la destruction du tissu pulmonaire et, finalement, de l'insuffisance respiratoire, première cause de morbidité et de mortalité chez ces patients. La réponse inflammatoire ainsi induite peut être réduite par divers traitements anti-inflammatoires, tels que corticoïdes, anti-inflammatoires non stéroïdiens ou azithromycine. L'apport oral en acides gras polyinsaturés (AGPI) oméga-3 pourrait être une autre approche thérapeutique intéressante. Ces nutriments sont décrits comme possédant des propriétés anti-inflammatoires notamment en favorisant la synthèse d'eicosanoïdes pourvus d'une activité inflammatoire moindre par rapport à ceux issus d'une autre famille d'AGPI, les oméga-6. Ce travail de thèse a pour objectif premier d'évaluer l'impact de cette approche nutritionnelle sur diverses fonctions du neutrophile chez des patients CF. Cependant un intérêt de nature prospective a également été porté à certains paramètres cliniques, afin d'évaluer la faisabilité d'une future étude axée sur des effets cliniques. Pour ce faire, une méthode de chromatographie liquide à haute performance couplée à un spectromètre de masse a été développée et validée. Cette analyse devait permettre le dosage simultané de deux eicosanoïdes, le leucotriène B4 (LTB4) issu des AGPI oméga-6 et le leucotriène B5 (LTB5) issu des AGPI oméga-3. Puis, une étude clinique, double aveugle, randomisée, croisée sans période de washout, mais contrôlée avec un placebo, a été mise au point pour évaluer l'effet immunomodulateur de ces AGPI oméga-3 donnés sous la forme d'un liquide nutritif chez des patients CF. Les résultats de cette étude ont permis de démontrer l'absorption intestinale des AGPI oméga-3 par les patients. De plus, leur administration a permis de modifier la production de teucotriène B. En effet, le ratio LTB4/LTB5 a été diminué de près de trois fois sous liquide nutritif enrichi en AGPI oméga-3. Enfin aucune différence n'a pu être notée pour les paramètres cliniques; toutefois les résultats reproductibles observés permettent d'envisager qu'une future étude multicentrique axée sur des effets cliniques est faisable. En conclusion, la modification de la composition en AGPI membranaires du neutrophile observée durant cette étude laisse penser que ces nutriments sont absorbés par les patients CF. La modulation de la production en LTBs qui en découle permet d'envisager un potentiel effet anti-inflammatoire. Toutefois, la relevance clinique de ces observations restent à être démontrée. A l'heure actuelle, une étude multicentrique, focalisée sur des paramètres cliniques, est nécessaire avant de pouvoir se prononcer sur l'utilisation des AGPI oméga-3 chez les patients CF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The epithelial sodium channel (ENaC) is responsible for Na(+) and fluid absorption across colon, kidney, and airway epithelia. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is a secreted, innate defense protein and an autocrine inhibitor of ENaC that is highly expressed in airway epithelia. While SPLUNC1 has a bactericidal permeability-increasing protein (BPI)-type structure, its NH2-terminal region lacks structure. Here we found that an 18 amino acid peptide, S18, which corresponded to residues G22-A39 of the SPLUNC1 NH2 terminus inhibited ENaC activity to a similar degree as full-length SPLUNC1 (∼2.5 fold), while SPLUNC1 protein lacking this region was without effect. S18 did not inhibit the structurally related acid-sensing ion channels, indicating specificity for ENaC. However, S18 preferentially bound to the βENaC subunit in a glycosylation-dependent manner. ENaC hyperactivity is contributory to cystic fibrosis (CF) lung disease. Unlike control, CF human bronchial epithelial cultures (HBECs) where airway surface liquid (ASL) height was abnormally low (4.2 ± 0.6 μm), addition of S18 prevented ENaC-led ASL hyperabsorption and maintained CF ASL height at 7.9 ± 0.6 μm, even in the presence of neutrophil elastase, which is comparable to heights seen in normal HBECs. Our data also indicate that the ENaC inhibitory domain of SPLUNC1 may be cleaved away from the main molecule by neutrophil elastase, suggesting that it may still be active during inflammation or neutrophilia. Furthermore, the robust inhibition of ENaC by the S18 peptide suggests that this peptide may be suitable for treating CF lung disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: Acute respiratory distress syndrome is a common and highly lethal inflammatory lung syndrome. We previously have shown that an adenoviral vector expressing the heat shock protein (Hsp)70 (AdHSP) protects against experimental sepsis-induced acute respiratory distress syndrome in part by limiting neutrophil accumulation in the lung. Neutrophil accumulation and activation is modulated, in part, by the nuclear factor-kappaB (NF-kappaB) signal transduction pathway. NF-kappaB activation requires dissociation/degradation of a bound inhibitor, IkappaBalpha. IkappaBalpha degradation requires phosphorylation by IkappaB kinase, ubiquitination by the SCFbeta-TrCP (Skp1/Cullin1/Fbox beta-transducing repeat-containing protein) ubiquitin ligase, and degradation by the 26S proteasome. We tested the hypothesis that Hsp70 attenuates NF-kappaB activation at multiple points in the IkappaBalpha degradative pathway. DESIGN: Laboratory investigation. SETTING: University medical center research laboratory. SUBJECTS: Adolescent (200 g) Sprague-Dawley rats and murine lung epithelial-12 cells in culture. INTERVENTIONS: Lung injury was induced in rats via cecal ligation and double puncture. Thereafter, animals were treated with intratracheal injection of 1) phosphate buffer saline, 2) AdHSP, or 3) an adenovirus expressing green fluorescent protein. Murine lung epithelial-12 cells were stimulated with tumor necrosis factor-alpha and transfected. NF-kappaB was examined using molecular biological tools. MEASUREMENTS AND MAIN RESULTS: Intratracheal administration of AdHSP to rats with cecal ligation and double puncture limited nuclear translocation of NF-kappaB and attenuated phosphorylation of IkappaBalpha. AdHSP treatment reduced, but did not eliminate, phosphorylation of the beta-subunit of IkappaB kinase. In vitro kinase activity assays and gel filtration chromatography revealed that treatment of sepsis-induced lung injury with AdHSP induced fragmentation of the IkappaB kinase signalosome. This stabilized intermediary complexes containing IkappaB kinase components, IkappaBalpha, and NF-kappaB. Cellular studies indicate that although ubiquitination of IkappaBalpha was maintained, proteasomal degradation was impaired by an indirect mechanism. CONCLUSIONS: Treatment of sepsis-induced lung injury with AdHSP limits NF-kappaB activation. This results from stabilization of intermediary NF-kappaB/IkappaBalpha/IkappaB kinase complexes in a way that impairs proteasomal degradation of IkappaBalpha. This novel mechanism by which Hsp70 attenuates an intracellular process may be of therapeutic value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inflammation is a protective attempt by the host to remove injurious stimuli and initiate the tissue healing process. The inflammatory response must be actively terminated, however, because failure to do so can result in 'bystander' damage to tissues and diseases such as arthritis or type-2 diabetes. Yet the mechanisms controlling excessive inflammatory responses are still poorly understood. Here we show that mouse effector and memory CD4(+) T cells abolish macrophage inflammasome-mediated caspase-1 activation and subsequent interleukin 1beta release in a cognate manner. Inflammasome inhibition is observed for all tested NLRP1 (commonly called NALP1) and NLRP3 (NALP3 or cryopyrin) activators, whereas NLRC4 (IPAF) inflammasome function and release of other inflammatory mediators such as CXCL2, interleukin 6 and tumour necrosis factor are not affected. Suppression of the NLRP3 inflammasome requires cell-to-cell contact and can be mimicked by macrophage stimulation with selected ligands of the tumour necrosis factor family, such as CD40L (also known as CD40LG). In a NLRP3-dependent peritonitis model, effector CD4(+) T cells are responsible for decreasing neutrophil recruitment in an antigen-dependent manner. Our findings reveal an unexpected mechanism of inflammasome inhibition, whereby effector and memory T cells suppress potentially damaging inflammation, yet leave the primary inflammatory response, crucial for the onset of immunity, intact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Intracerebral hemorrhage (ICH) is a subtype of stroke characterized by a haematoma within the brain parenchyma resulting from blood vessel rupture and with a poor outcome. In ICH, the blood entry into the brain triggers toxicity resulting in a substantial loss of neurons and an inflammatory response. At the same time, blood-brain barrier (BBB) disruption increases water content (edema) leading to growing intracranial pressure, which in turn worsens neurological outcome. Although the clinical presentation is similar in ischemic and hemorrhagic stroke, the treatment is different and the stroke type needs to be determined beforehand by imaging which delays the therapy. C-Jun N-terminal kinases (JNKs) are a family of kinases activated in response to stress stimuli and involved in several pathways such as apoptosis. Specific inhibition of JNK by a TAT-coupled peptide (XG-102) mediates strong neuroprotection in several models of ischemic stroke in rodents. Recently, we have observed that the JNK pathway is also activated in a mouse model of ICH, raising the question of the efficacy of XG-102 in this model. Method: ICH was induced in the mouse by intrastriatal injection of bacterial collagenase (0,1 U). Three hours after surgery, animals received an intravenous injection of 100 mg/kg of XG-102. The neurological outcome was assessed everyday until sacrifice using a score (from 0 to 9) based on 3 behavioral tests performed daily until sacrifice. Then, mice were sacrificed at 6 h, 24 h, 48 h, and 5d after ICH and histological studies performed. Results: The first 24 h after surgery are critical in our ICH mice model, and we have observed that XG-102 significantly improves neurological outcome at this time point (mean score: 1,8 + 1.4 for treated group versus 3,4+ 1.8 for control group, P<0.01). Analysis of the lesion volume revealed a significant decrease of the lesion area in the treated group at 48h (29+ 11mm3 in the treated group versus 39+ 5mm3 in the control group, P=0.04). XG-102 mainly inhibits the edema component of the lesion. Indeed, a significant inhibition Journal of Cerebral Blood Flow & Metabolism (2009) 29, S490-S493 & 2009 ISCBFM All rights reserved 0271-678X/09 $32.00 www.jcbfm.com of the brain swelling was observed in treated animals at 48h (14%+ 13% versus 26+ 9% in the control group, P=0.04) and 5d (_0.3%+ 4.5%versus 5.1+ 3.6%in the control group, P=0.01). Conclusions: Inhibition of the JNK pathway by XG- 102 appears to lead to several beneficial effects. We can show here a significant inhibition of the cerebral edema in the ICH model providing a further beneficial effect of the XG-102 treatment, in addition to the neuroprotection previously described in the ischemic model. This result is of interest because currently, clinical treatment for brain edema is limited. Importantly, the beneficial effects observed with XG-102 in models of both stroke types open the possibility to rapidly treat stroke patients before identifying the stroke subtype by imaging. This will save time which is precious for stroke outcome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Nonspecific inflammatory reactions characterized by local tenderness, fever, and flu-like discomfort have been seen in patients undergoing endoluminal graft placement in the abdominal aorta or the femoral arteries. We undertook a study to assess the clinical and laboratory parameters of this inflammation. METHODS: Ten patients with femoropopliteal artery (n = 9) or aortic (n = 1) lesions were treated with EndoPro System 1 stent-grafts made of nitinol alloy and covered with a polyester (Dacron) fabric. Eleven patients implanted with a bare nitinol stent served as the control group. RESULTS: In the stent-graft group, four patients showed clinical signs of acute inflammation manifested by fever and local tenderness. Three of these patients suffered thrombosis of the stent-grafts during the first month of follow-up. Plasma levels of interleukin-1 beta and interleukin-6 in all stent-graft patients were markedly increased 1 day after intervention (7.3 +/- 2.8 versus 90.2 +/- 34.1 pg/mL and 15.6 +/- 5.8 versus 175.5 +/- 66.3 pg/mL, respectively; p < 0.01). This was followed by an increase in fibrinogen (3.0 +/- 0.2 versus 5.0 +/- 0.2 g/L; p < 0.05) and C-reactive protein (14.6 +/- 3.3 versus 77.5 +/- 15.0 mg/L; p < 0.01) at 1 week. No direct correlation between the inflammatory markers and symptoms could be found. In vitro analysis showed that individual components of the stent-graft did not activate human neutrophils, whereas the intact stent-graft itself induced a marked neutrophil activation. CONCLUSIONS: The component of the self-expanding stent-graft responsible for the nonspecific inflammatory reaction was not identified in this study. It is likely that the stent-graft itself or some as yet unrecognized element of the device other than the Dacron fabric or metal alloy may be a potent in vivo inducer of cytokine reaction by neutrophils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary Resolution of the inflammation is as important as its induction. In this thesis, we investigated the contributions of two prominent factors involved in inflammation, Tumour Necrosis Factor (TNF) and neutrophils. We studied their role in the resolution óf the inflammatory lesion induced by the infection with the protozoan parasite Leishmania major. In mice susceptible to infection with L. major, unhealing lesions are characterized by an elevated number and sustained presence of inflammatory neutrophils in the infected tissue, illustrating an acute inflammatory process. In contrast, mice from resistant strains, which resolve their lesions, can control the presence of neutrophils at the site of infection. Neutrophil persistence in the infected tissue may result from several events including an increased survival of neutrophils mediated by factors produced by the pathogen or the microenvironment. Following infection with L. major, the cellular composition of the inflammatory lesion differs significantly between susceptible and resistant mice and a higher proportion of macrophages is present in the lesions of resistant strains. In an attempt to clarify the factors involved in neutrophil persistence, we investigated the mechanisms modulating neutrophil cell death. We demonstrated that macrophages could induce neutrophil apoptosis in a process involving TNF. TNF is an essential cytokine with pro- and anti-inflammatory properties, which is expressed as a transmembrane protein that can be cleaved releasing the secreted form. Our data show the essential role of the transmembrane form of TNF (mTNF) in the induction of neutrophil apoptosis by macrophages, revealing macrophages and mTNF as important regulators of neutrophil apoptosis. TNF is critical in the resolution of the inflammatory lesion induced by L. major infection, and in L. major resistant strains its absence results in increased swelling of the lesions. We investigated the contribution of mTNF in the outcome of L. major infection. Our data demonstrate that following infection with L. major, mTNF is sufficient to support the resolution of the inflammatory lesion and optimal parasite killing. In addition, we show that the presence of mTNF is essential to induce neutrophil clearance in the infected tissue. While the persistence of neutrophils is deleterious for the host, we could demonstrate an early anti-inflammatory role of neutrophils. Altogether, this study demonstrates the importance of mTNF in the induction of neutrophil apoptosis, a process involved in the resolution of the inflammatory lesion induced by L. major infection. Résumé La résolution de l'inflammation est toute aussi importante que son initiation. Durant ce travail de thèse, nous avons étudié les contributions de deux facteurs importants impliqués dans l'inflammation, le TNF (Facteur Nécrosant des Tumeurs) et les neutrophiles, dans la résolution de la lésion inflammatoire induite par l'infection avec le parasite protozoaire Leishmania major. Chez les souris sensibles à l'infection avec L. major, des lésions importantes qui ne guérissent pas se développent ; celles-ci sont caractérisées par un nombre élevé et une présence soutenue de neutrophiles dans les tissus infectés, ce qui illustre un processus inflammatoire aigu. Au contraire, les souris résistantes à l'infection qui guérissent leurs lésions, sont capables de contrôler la présence des neutrophiles au site d'infection. La persistance des neutrophiles dans la lésion inflammatoire peut être la conséquence de plusieurs événements, dont une augmentation de la survie des neutrophiles induite par des facteurs produits par le pathogène ou le micro-environnement. Suite à l'infection avec L. major, la composition cellulaire de la lésion inflammatoire est significativement différente entre les souris sensibles et résistantes à l'infection, et une plus grande proportion de macrophages est présente dans les lésions des souris résistantes. Dans l'objectif de clarifier les facteurs impliqués dans la persistance des neutrophiles dans les tissus infectés par L. major, nous avons étudié les mécanismes de régulation de la mort des neutrophiles. Nous avons démontré que les macrophages pouvaient induire l'apoptose des neutrophiles dans un procédé impliquant le TNF. Le TNF est une cytokine aux propriétés pro- et anti-inflammatoires, exprimée sous une forme transmembranaire qui peut être clivée pour relâcher la forme sécrétée. Nos expériences illustrent le rôle essentiel de la forme transmembranaire du TNF (mTNF) dans l'induction de l'apoptose des neutrophiles par les macrophages. Lé TNF est une cytokine importante dans la résolution de la réaction inflammatoire induite par L. major, et chez les souris résistantes l'absence de TNF provoque des lésions inflammatoires plus importantes. Nous avons étudié la contribution du mTNF dans la résolution de l'infection avec L. major. Nos résultats démontrent que suite à une infection avec le parasite, la présence du mTNF est suffisante pour guérir la lésion inflammatoire et contrôler efficacement la réplication du parasite. De plus, le mTNF joue un rôle essentiel dans l'élimination des neutrophiles du tissu infecté. Alors que la persistance des neutrophiles est nocive pour l'hôte, nous avons montré que les neutrophiles avaient un rôle précoce anti-inflammatoire. En résumé, cette étude révèle l'importance du mTNF dans l'induction de l'apoptose des neutrophiles par les macrophages, un procédé impliqué dans la résolution de la lésion inflammatoire induite par l'infection avec L. major.