246 resultados para Myocardial perfusion
Resumo:
BACKGROUND: To date, there is no quality assurance program that correlates patient outcome to perfusion service provided during cardiopulmonary bypass (CPB). A score was devised, incorporating objective parameters that would reflect the likelihood to influence patient outcome. The purpose was to create a new method for evaluating the quality of care the perfusionist provides during CPB procedures and to deduce whether it predicts patient morbidity and mortality. METHODS: We analysed 295 consecutive elective patients. We chose 10 parameters: fluid balance, blood transfused, Hct, ACT, PaO2, PaCO2, pH, BE, potassium and CPB time. Distribution analysis was performed using the Shapiro-Wilcoxon test. This made up the PerfSCORE and we tried to find a correlation to mortality rate, patient stay in the ICU and length of mechanical ventilation. Univariate analysis (UA) using linear regression was established for each parameter. Statistical significance was established when p < 0.05. Multivariate analysis (MA) was performed with the same parameters. RESULTS: The mean age was 63.8 +/- 12.6 years with 70% males. There were 180 CABG, 88 valves, and 27 combined CABG/valve procedures. The PerfSCORE of 6.6 +/- 2.4 (0-20), mortality of 2.7% (8/295), CPB time 100 +/- 41 min (19-313), ICU stay 52 +/- 62 hrs (7-564) and mechanical ventilation of 10.5 +/- 14.8 hrs (0-564) was calculated. CPB time, fluid balance, PaO2, PerfSCORE and blood transfused were significantly correlated to mortality (UA, p < 0.05). Also, CPB time, blood transfused and PaO2 were parameters predicting mortality (MA, p < 0.01). Only pH was significantly correlated for predicting ICU stay (UA). Ultrafiltration (UF) and CPB time were significantly correlated (UA, p < 0.01) while UF (p < 0.05) was the only parameter predicting mechanical ventilation duration (MA). CONCLUSIONS: CPB time, blood transfused and PaO2 are independent risk factors of mortality. Fluid balance, blood transfusion, PaO2, PerfSCORE and CPB time are independent parameters for predicting morbidity. PerfSCORE is a quality of perfusion measure that objectively quantifies perfusion performance.
Resumo:
Purpose: The aim of this educational poster is to introduce the technical principles of cerebral perfusion CT and to provide examples of its clinical applications and potential limitations in the everyday emergency practice. Methods and materials: Cerebral perfusion CT is a well established investigatory tool for many vascular and parenchymal brain dysfunctions. CT perfusion maps allow a semiquantitative assessment of cerebral perfusion. Results: Currently, cerebral perfusion CT has a pivotal role in differentiating reversible from irreversible ischemic parenchymal insult besides its integral role in grading vasospasm after subarachnoid hemorrhage. Furthermore, cerebral perfusion CT can be coupled to acetazolamide administration in order to assess the cerebrovascular reserve capacity before performing extra-/intra-cranial bypass surgery in patients with cerebral vascular insufficiency. Cerebral perfusion CT can also identify diffuse abnormalities of cerebral perfusion in children with traumatic brain injury showing a low initial GCS in order to predict the final outcome regarding the late occurrence of irreversible parenchymal damage. Cerebral Perfusion CT is also able to detect focal parenchymal perfusion abnormalities in acute epileptic seizures. Conclusion: Cerebral perfusion CT can be integrated in the management of many vascular, traumatic and functional disorders of the brain.
Resumo:
BACKGROUND: Photodynamic therapy (PDT) at low drug-light conditions can enhance the transport of intravenously injected macromolecular therapeutics through the tumor vasculature. Here we determined the impact of PDT on the distribution of liposomal doxorubicin (Liporubicin™) administered by isolated lung perfusion (ILP) in sarcomas grown on rodent lungs. METHODS: A syngeneic methylcholanthrene-induced sarcoma cell line was implanted subpleurally in the left lung of Fischer rats. Treatment schemes consisted in ILP alone (400 μg of Liporubicin), low-dose (0.0625 mg/kg Visudyne®, 10 J/cm(2) and 35 mW/cm(2)) and high-dose left lung PDT (0.125 mg/kg Visudyne, 10 J/cm(2) and 35 mW/cm(2)) followed by ILP (400 μg of Liporubicin). The uptake and distribution of Liporubicin in tumor and lung tissues were determined by high-performance liquid chromatography and fluorescence microscopy in each group. RESULTS: Low-dose PDT significantly improved the distribution of Liporubicin in tumors compared to high-dose PDT (p < 0.05) and ILP alone (p < 0.05). However, both PDT pretreatments did not result in a higher overall drug uptake in tumors or a higher tumor-to-lung drug ratio compared to ILP alone. CONCLUSIONS: Intraoperative low-dose Visudyne-mediated PDT enhances liposomal doxorubicin distribution administered by ILP in sarcomas grown on rodent lungs which is predicted to improve tumor control by ILP.
Resumo:
Isolated cytostatic lung perfusion (ILP) is an attractive technique allowing delivery of a high-dose of cytostatic agents to the lungs while limiting systemic toxicity. In developing a rat model of ILP, we have analysed the effect of the route of tumour cell injection on the source of tumour vessels. Pulmonary sarcomas were established by injecting a sarcoma cell suspension either by the intravenous (i.v.) route or directly into the lung parenchyma. Ink perfusion through either pulmonary artery (PA) or bronchial arteries (BA) was performed and the characteristics of the tumour deposits defined. i.v. and direct injection methods induced pulmonary sarcoma nodules, with similar histological features. The intraparenchymal injection of tumour cells resulted in more reliable and reproducible tumour growth and was associated with a longer survival of the animals. i.v. injected tumours developed a PA-derived vascular tree whereas directly injected tumours developed a BA-derived vasculature.
Resumo:
Objective: Saphenous vein graft bypass remains the salvage option when¦endovascular procedure has failed or was contraindicated due to extensive¦occlusive lesions. However, pathological wall remodeling leading leading to¦graft failure is one of the most limiting factors of this therapy. Therefore, the¦understanding of this remodeling process of human vein is essential to the design¦of future effective therapeutics and it requires an adapted model of ex-vivo vein¦perfusion.¦Methods: We have developed an ex vivo vein support system (EVVSS), which¦uses standardized and controlled hemodynamic parameters for the pulsatile¦perfusion of saphenous vein segments. The morphological and molecular¦parameters involved in the remodeling process under an arterial shear stress¦associated to low (7 mm Hg) or high (70 mm Hg) pressure conditions can be¦analyzed.¦Results: Histomorphometric analysis showed that the vein segments perfused¦during 7 days under high pressure undergo a significant neointima development¦compared to veins exposed to low pressure conditions. The application of an¦arterial shear stress in the vein under low pressure induced an elevation of the¦MMP-2 and MMP-9 expression, activity and transcription. The application of¦higher pressure is associated to increased MMP2 expression and transcription¦and MMP9 transcription. TIMP1 expression and transcription were initiated by¦the application of an arterial shear stress but not modified by the modification¦of the pressure. However, TIMP2 expression was increased under high¦pressure conditions but its transcription was inhibited by arterial shear stress,¦independently of the pressure. The values of transcription and expression of¦PAI-1 were not modified by high pressure. Eph-B4 transcription and expression¦were significantly decreased under arterial shear stress.¦Conclusion: These data show that our EVVSS is a valuable setting to study¦ex vivo remodeling of human saphenous veins submitted to arterial conditions.¦The intimal hyperplasia as well as MMP 2, 9 and TIMP 2 seem to be influenced¦by the pressure.
Resumo:
Acute cardiovascular dysfunction occurs perioperatively in more than 20% of cardiosurgical patients, yet current acute heart failure (HF) classification is not applicable to this period. Indicators of major perioperative risk include unstable coronary syndromes, decompensated HF, significant arrhythmias and valvular disease. Clinical risk factors include history of heart disease, compensated HF, cerebrovascular disease, presence of diabetes mellitus, renal insufficiency and high-risk surgery. EuroSCORE reliably predicts perioperative cardiovascular alteration in patients aged less than 80 years. Preoperative B-type natriuretic peptide level is an additional risk stratification factor. Aggressively preserving heart function during cardiosurgery is a major goal. Volatile anaesthetics and levosimendan seem to be promising cardioprotective agents, but large trials are still needed to assess the best cardioprotective agent(s) and optimal protocol(s). The aim of monitoring is early detection and assessment of mechanisms of perioperative cardiovascular dysfunction. Ideally, volume status should be assessed by 'dynamic' measurement of haemodynamic parameters. Assess heart function first by echocardiography, then using a pulmonary artery catheter (especially in right heart dysfunction). If volaemia and heart function are in the normal range, cardiovascular dysfunction is very likely related to vascular dysfunction. In treating myocardial dysfunction, consider the following options, either alone or in combination: low-to-moderate doses of dobutamine and epinephrine, milrinone or levosimendan. In vasoplegia-induced hypotension, use norepinephrine to maintain adequate perfusion pressure. Exclude hypovolaemia in patients under vasopressors, through repeated volume assessments. Optimal perioperative use of inotropes/vasopressors in cardiosurgery remains controversial, and further large multinational studies are needed. Cardiosurgical perioperative classification of cardiac impairment should be based on time of occurrence (precardiotomy, failure to wean, postcardiotomy) and haemodynamic severity of the patient's condition (crash and burn, deteriorating fast, stable but inotrope dependent). In heart dysfunction with suspected coronary hypoperfusion, an intra-aortic balloon pump is highly recommended. A ventricular assist device should be considered before end organ dysfunction becomes evident. Extra-corporeal membrane oxygenation is an elegant solution as a bridge to recovery and/or decision making. This paper offers practical recommendations for management of perioperative HF in cardiosurgery based on European experts' opinion. It also emphasizes the need for large surveys and studies to assess the optimal way to manage perioperative HF in cardiac surgery.
Predictors and accuracy of abnormal CT perfusion in 1296 consecutive acute ischemic stroke patients.
Resumo:
BACKGROUND: Contrast-enhanced ultrasonography (CEUS) is a novel imaging technique that is safe and applicable on the bedside. Recent developments seem to enable CEUS to quantify organ perfusion. We performed an exploratory study to determine the ability of CEUS to detect changes in renal perfusion and to correlate them with effective renal plasma flow. METHODS: CEUS with destruction-refilling sequences was studied in 10 healthy subjects, at baseline and during infusion of angiotensin II (AngII) at low (1 ng/kg/min) and high dose (3 ng/kg/min) and 1 h after oral captopril (50 mg). Perfusion index (PI) was obtained and compared with the effective renal plasma flow (ERPF) obtained by parallel para-aminohippurate (PAH) clearance. RESULTS: Median PI decreased from 188.6 (baseline) to 100.4 with low-dose AngII (-47%; P < 0.02) and to 66.1 with high-dose AngII (-65%; P < 0.01) but increased to 254.7 with captopril (+35%; P > 0.2). These changes parallelled those observed with ERPF, which changed from a median of 672.1 mL/min (baseline) to 572.3 (low-dose AngII, -15%, P < 0.05) and to 427.2 (high-dose AngII, -36%, P < 0.001) and finally 697.1 (captopril, +4%, P < 0.02). CONCLUSIONS: This study demonstrates that CEUS is able to detect changes in human renal cortical microcirculation as induced by AngII infusion and/or captopril administration. The changes in perfusion indices parallel those in ERPF as obtained by PAH clearance.
Resumo:
Background¦The outcome after primary percutaneous coronary intervention (pPCI) for STElevation¦Myocardial Infarction (STEMI) is strongly affected by time delays. In thepresent study, we sought to identify the impact of specific socioeconomic factors on time delays, subsequent STEMI management and outcomes in STEMI patients from a well-defined region of the French part of Switzerland.¦Method¦A total of 402 consecutive patients undergoing pPCI for STEMI in a large tertiary hospital were retrospectively studied. Symptom-to-first-medical-contact time was analyzed for the following socioeconomic factors: level of education, gender, origin and marital status. Main exclusion criteria were: time delay beyond 12 hours, previous treatment by fibrinolysis or patients immediately referred for CABG.¦Therefore, 352 patients were finally included.¦Results¦At one year, there was no difference in mortality amongst the different socioeconomic groups. Furthermore, there was no difference in management characteristics between them. Symptom-to-first-medical-contact time was significantly higher for patients with a low level of education, Swiss citizens and non-married patients with median differences of 40 minutes, 48 minutes, and 60 minutes, respectively (p<0.05).¦Nevertheless, no difference was found regarding in-hospital management and clinical outcome.¦Conclusion¦This study demonstrates that symptom-to-first-medical-contact time is higher amongst people with a lower educational level, Swiss-citizens, and non-married people. Because of the low mortality rate in general, these differences in time delays did not affect clinical outcomes. Still, primary prevention measures should particularly focus on these vulnerable populations.
Resumo:
INTRODUCTION: Intravoxel incoherent motion (IVIM) imaging is an MRI perfusion technique that uses a diffusion-weighted sequence with multiple b values and a bi-compartmental signal model to measure the so-called pseudo-diffusion of blood caused by its passage through the microvascular network. The goal of the current study was to assess the feasibility of IVIM perfusion fraction imaging in patients with acute stroke. METHODS: Images were collected in 17 patients with acute stroke. Exclusion criteria were onset of symptoms to imaging >5 days, hemorrhagic transformation, infratentorial lesions, small lesions <0.5 cm in minimal diameter and hemodynamic instability. IVIM imaging was performed at 3 T, using a standard spin-echo Stejskal-Tanner pulsed gradients diffusion-weighted sequence, using 16 b values from 0 to 900 s/mm(2). Image quality was assessed by two radiologists, and quantitative analysis was performed in regions of interest placed in the stroke area, defined by thresholding the apparent diffusion coefficient maps, as well as in the contralateral region. RESULTS: IVIM perfusion fraction maps showed an area of decreased perfusion fraction f in the region of decreased apparent diffusion coefficient. Quantitative analysis showed a statistically significant decrease in both IVIM perfusion fraction f (0.026 ± 0.019 vs. 0.056 ± 0.025, p = 2.2 · 10(-6)) and diffusion coefficient D compared with the contralateral side (3.9 ± 0.79 · 10(-4) vs. 7.5 ± 0.86 · 10(-4) mm(2)/s, p = 1.3 · 10(-20)). CONCLUSION: IVIM perfusion fraction imaging is feasible in acute stroke. IVIM perfusion fraction is significantly reduced in the visible infarct. Further studies should evaluate the potential for IVIM to predict clinical outcome and treatment response.
Resumo:
In this report we present the case of a 77-yr-old man who underwent resection of the upper lobe of the left lung for a carcinoma, six weeks after percutaneous transluminal coronary angioplasty (PTCA) with stenting of the left anterior descending (LAD) and circumflex coronary arteries. Antiplatelet therapy with clopidogrel was interrupted two weeks before surgery to allow for epidural catheter placement and to minimize haemorrhage. The surgical procedure was uneventful. In the immediate postoperative period, however, the patient suffered severe myocardial ischaemia. Emergency coronary angiography showed complete thrombotic occlusion of the LAD stent. In spite of successful recanalization, reinfarction occurred and the patient died in cardiogenic shock. Prophylactic preoperative coronary stenting may put the patient at risk of stent thrombosis if surgery cannot be postponed for three months. In such cases, other strategies such as perioperative beta-blockade for preoperative cardiac management should be considered.
Resumo:
BACKGROUND: Intracoronary injection of autologous bone marrow-derived mononucleated cells (BM-MNC) may improve LV function shortly after acute ST elevation myocardial infarction (STEMI), but little is known about the long-term durability of the treatment effect. METHODS: In a single-centre trial a total of 60 patients with acute anterior STEMI, successful reperfusion therapy and a left ventricular ejection fraction (LVEF) of <50% were screened for the study. 23 patients were actively treated with intracoronary infusion of BM-MNC within a median of 3 days. The open-label control group consisted of 19 patients who did not consent to undergo BM-MNC treatment but agreed to undergo regular clinical and echocardiographic follow-up for up to 5 years after AMI. RESULTS: Whereas at 4 months there was no significant difference between the increase in LVEF in the BM-MNC group and the control group (+7.0%, 95%CI 3.6; 10.4) vs. +3.9%, 95%CI -2.1; 10), the absolute increase at 5 years remained stable in the BM-MNC but not in the control group (+7.95%, 95%CI 3.5; 12.4 vs. -0.5%, 95%CI -5.4; 4.4; p for interaction between groups = 0.035). DISCUSSION: In this single-centre, open-labelled study, intracoronary administration of BM-MNC is feasible and safe in the short term. It is also associated with sustained improvement of left ventricular function in patients with acute myocardial infarction, encouraging phase III studies to examine the potential BM-MNC effect on clinical outcome.