133 resultados para Mouse gonad cell lines
Resumo:
Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone that potentiates glucose-induced insulin secretion by pancreatic beta cells. The mechanisms of interaction between GLP-1 and glucose signaling pathways are not well understood. Here we studied the coupling of the cloned GLP-1 receptor, expressed in fibroblasts or in COS cells, to intracellular second messengers and compared this signaling with that of the endogenous receptor expressed in insulinoma cell lines. Binding of GLP-1 to the cloned receptor stimulated formation of cAMP with the same dose dependence and similar kinetics, compared with the endogenous receptor of insulinoma cells. Compared with forskolin-induced cAMP accumulation, that induced by GLP-1 proceeded with the same initial kinetics but rapidly reached a plateau, suggesting fast desensitization of the receptor. Coupling to the phospholipase C pathway was assessed by measuring inositol phosphate production and variations in the intracellular calcium concentration. No GLP-1-induced production of inositol phosphates could be measured in the different cell types studied. A rise in the intracellular calcium concentration was nevertheless observed in transfected COS cells but was much smaller than that observed in response to norepinephrine in cells also expressing the alpha 1B-adrenergic receptor. Importantly, no such increase in the intracellular calcium concentration could be observed in transfected fibroblasts or insulinoma cells, which, however, responded well to thrombin or carbachol, respectively. Together, our data show that interaction between GLP-1 and glucose signaling pathways in beta cells may be mediated uniquely by an increase in the intracellular cAMP concentration, with the consequent activation of protein kinase A and phosphorylation of elements of the glucose-sensing apparatus or of the insulin granule exocytic machinery.
Resumo:
The T3 complex is known to be expressed on the cell surface of mature T cells together with either the alpha-beta heterodimeric T cell receptor (TCR) or the TCR gamma protein. In a number of immature T cell malignancies, however, T3 has been described exclusively in the cytoplasm. We have investigated five such T cell lines with cytoplasmic T3 and could demonstrate by biosynthetic labeling the presence of the alpha and beta chains of the TCR in the cytoplasm of two of them, CEM and Ichikawa. No surface TCR alpha-beta protein could be detected by staining with the WT31 antibody. These observations, therefore, argue against the concept that expression of the TCR alpha chain controls the surface expression of the T3/TCR complex. Interestingly, phorbol 12-myristate 13-acetate (PMA) induced cell surface expression of T3 protein in these two cell lines only. Moreover, on surface-iodinated CEM cells no association of T3 and TCR molecules could be demonstrated after treatment with PMA, and expression of TCR alpha and beta chains was limited to the cytoplasm. In Ichikawa cells, however, PMA induced surface expression of a mature T3/TCR complex. Our findings indicate that separate regulatory mechanisms may exist for the surface expression of the T3 proteins and for the assembly of the T3/TCR complex.
Resumo:
Microarray gene expression profiles of fresh clinical samples of chronic myeloid leukaemia in chronic phase, acute promyelocytic leukaemia and acute monocytic leukaemia were compared with profiles from cell lines representing the corresponding types of leukaemia (K562, NB4, HL60). In a hierarchical clustering analysis, all clinical samples clustered separately from the cell lines, regardless of leukaemic subtype. Gene ontology analysis showed that cell lines chiefly overexpressed genes related to macromolecular metabolism, whereas in clinical samples genes related to the immune response were abundantly expressed. These findings must be taken into consideration when conclusions from cell line-based studies are extrapolated to patients.
Resumo:
Epitheliocystis is an infectious disease affecting gills and skin of various freshwater and marine fishes, associated with high mortality and reduced growth of survivors. Candidatus Piscichlamydia salmonis and Clavochlamydia salmonicola have recently been identified as aetiological agents of epitheliocystis in Atlantic Salmon. In addition, several other members of the Chlamydiales order have been identified in other fish species. To clarify the pathogenicity of Chlamydia-like organisms towards fishes, we investigated the permissivity of two fish cell lines, EPC-175 (Fathead Minnow) and RTG-2 (rainbow trout) to three Chlamydia-related bacteria: Waddlia chondrophila, Parachlamydia acanthamoebae and Estrella lausannensis. Quantitative PCR and immunofluorescence demonstrated that W. chondrophila and, to a lesser extent, E. lausannensis were able to replicate in the two cell lines tested. Waddlia chondrophila multiplied rapidly in its host cell and a strong cytopathic effect was observed. During E. lausannensis infection, we observed a limited replication of the bacteria not followed by host cell lysis. Very limited replication of P. acanthamoebae was observed in both cell lines tested. Given its high infectivity and cytopathic effect towards fish cell lines, W. chondrophila represents the most interesting Chlamydia-related bacteria to be used to develop an in vivo model of epitheliocystis disease in fishes.
Resumo:
BACKGROUND: CD19 is a B cell lineage specific surface receptor whose broad expression, from pro-B cells to early plasma cells, makes it an attractive target for the immunotherapy of B cell malignancies. In this study we present the generation of a novel humanized anti-CD19 monoclonal antibody (mAb), GBR 401, and investigate its therapeutic potential on human B cell malignancies. METHODS: GBR 401 was partially defucosylated in order to enhance its cytotoxic function. We analyzed the in vitro depleting effects of GBR 401 against B cell lines and primary malignant B cells from patients in the presence or in absence of purified NK cells isolated from healthy donors. In vivo, the antibody dependent cellular cytotoxicity (ADCC) efficacy of GBR 401 was assessed in a B cell depletion model consisting of SCID mice injected with healthy human donor PBMC, and a malignant B cell depletion model where SCID mice are xenografted with both primary human B-CLL tumors and heterologous human NK cells. Furthermore, the anti-tumor activity of GBR 401 was also evaluated in a xenochimeric mouse model of human Burkitt lymphoma using mice xenografted intravenously with Raji cells. Pharmacological inhibition tests were used to characterize the mechanism of the cell death induced by GBR 401. RESULTS: GBR 401 exerts a potent in vitro and in vivo cytotoxic activity against primary samples from patients representing various B-cell malignancies. GBR 401 elicits a markedly higher level of ADCC on primary malignant B cells when compared to fucosylated similar mAb and to Rituximab, the current anti-CD20 mAb standard immunotherapeutic treatment for B cell malignancies, showing killing at 500 times lower concentrations. Of interest, GBR 401 also exhibits a potent direct killing effect in different malignant B cell lines that involves homotypic aggregation mediated by actin relocalization. CONCLUSION: These results contribute to consolidate clinical interest in developing GBR 401 for treatment of hematopoietic B cell malignancies, particularly for patients refractory to anti-CD20 mAb therapies.
Resumo:
BackgroundMutations in TNFRSF13B, the gene encoding transmembrane activator and calcium modulator cyclophilin ligand interactor (TACI), are found in 10% of patients with common variable immunodeficiency. However, the most commonly detected mutation is the heterozygous change C104R, which is also found in 0.5% to 1% of healthy subjects. The contribution of the C104R mutation to the B-cell defects observed in patients with common variable immunodeficiency therefore remains unclear.ObjectiveWe sought to define the functional consequences of the C104R mutation on B-cell function.MethodsWe performed in vitro studies of TACI C104R expression and signaling. A knock-in mouse with the equivalent mutation murine TACI (mTACI) C76R was generated as a physiologically relevant model of human disease. We examined homozygous and heterozygous C76R mutant mice alongside wild-type littermates and studied specific B-cell lineages and antibody responses to T cell-independent and T cell-dependent challenge.ResultsC104R expression and ligand binding are significantly diminished when the mutant protein is expressed in 293T cells or in patients' cell lines. This leads to defective nuclear factor κB activation, which is proportionally restored by reintroduction of wild-type TACI. Mice heterozygous and homozygous for mTACI C76R exhibit significant B-cell dysfunction with splenomegaly, marginal zone B-cell expansion, diminished immunoglobulin production and serological responses to T cell-independent antigen, and abnormal immunoglobulin synthesis.ConclusionsThese data show that the C104R mutation and its murine equivalent, C76R, can significantly disrupt TACI function, probably through haploinsufficiency. Furthermore, the heterozygous C76R mutation alone is sufficient to disturb B-cell function with lymphoproliferation and immunoglobulin production defects.
Resumo:
Amplification of the epidermal growth factor receptor (EGFR) or expression of its constitutively activated mutant, DeltaEGFR(2-7), in association with the inactivation of the INK4a/Arf gene locus is a frequent alteration in human glioblastoma. The notion of a cooperative effect between these two alterations has been demonstrated in respective mouse brain tumor models including our own. Here, we investigated underlying molecular mechanisms in early passage cortical astrocytes deficient for p16(INK4a)/p19(Arf) or p53, respectively, with or without ectopic expression of DeltaEGFR(2-7). Targeting these cells with the specific EGFR inhibitor tyrphostin AG1478 revealed that phosphorylation of ERK was only abrogated in the presence of an intact INK4a/Arf gene locus. The sensitivity to inhibit ERK phosphorylation was independent of ectopic expression of DeltaEGFR(2-7) and independent of the TP53 status. This resistance to downregulate the MAPK pathway in the absence of INK4a/Arf was confirmed in cell lines derived from our mouse glioma models with the respective initial genetic alterations. Thus, deletion of INK4a/Arf appears to keep ERK in its active, phosphorylated state insensitive to an upstream inhibitor specifically targeting EGFR/DeltaEGFR(2-7). This resistance may contribute to the cooperative tumorigenic effect selected for in human glioblastoma that may be of crucial clinical relevance for treatments specifically targeting EGFR/DeltaEGFR(2-7) in glioblastoma patients.
Resumo:
PURPOSE: The potential of stem cells (SCs) as a source for cell-based therapy on a wide range of degenerative diseases and damaged tissues such as retinal degeneration has been recognized. Generation of a high number of retinal stem cells (RSCs) in vitro would thus be beneficial for transplantation in the retina. However, as cells in prolonged cultivation may be unstable and thus have a risk of transformation, it is important to assess the stability of these cells. METHODS: Chromosomal aberrations were analyzed in mouse RSC lines isolated from adult and from postnatal day (PN)1 mouse retinas. Moreover, selected cell lines were tested for anchorage-dependent proliferation, and SCs were transplanted into immunocompromised mice to assess the possibility of transformation. RESULTS: Marked aneuploidy occurred in all adult cell lines, albeit to different degrees, and neonatal RSCs were the most stable and displayed a normal karyotype until at least passage 9. Of interest, the level of aneuploidy of adult RSCs did not necessarily correlate with cell transformation. Only the adult RSC lines passaged for longer periods and with a higher dilution ratio underwent transformation. Furthermore, we identified several cell cycle proteins that might support the continuous proliferation and transformation of the cells. CONCLUSIONS: Adult RSCs rapidly accumulated severe chromosomal aberrations during cultivation, which led to cell transformation in some cell lines. The culture condition plays an important role in supporting the selection and growth of transformed cells.
Resumo:
Résumé : Le virus tumoral de la glande mammaire de la souris (MMTV) est un rétrovirus provoquant le développement de tumeurs dans les glandes mammaires des souris susceptibles femelles. Au cours de son évolution, le virus s'est adapté et s'exprime dans des cellules spécialisées. Les lymphocytes B sont les premières cellules infectées et elles sont essentielles pour la propagation de l'infection aux glandes mammaires. Dans notre étude, le virus MMTV a été utilisé afin d'examiner les voies de signalisation induites par les glucocorticoïdes (dexaméthasone (dex), une hormone stéroïdienne) et le transforming growth factor-f3 (TGF-P, une cytokine), deux molécules impliquées dans l'activation de la transcription à partir du promoteur du MMTV dans les cellules B. Le TGF-P seul n'influence pas l'activité du promoteur du MMTV. Par contre, en synergie avec dex, le TGF-P provoque une super-induction de l'expression du promoteur par rapport à une stimulation par le glucocorticoïde seul. Cette super-induction est régulée par une famille de protéines, les Smads. Ainsi, dans les lymphocytes B, l'utilisation du MMTV a permis de mettre en évidence une nouvelle synergie entre les glueocortieoïdes et le TGF-p. pans ce travail, l'utilisation d'inhibiteurs pharmacologiques et de mutants « dominant-négatifs » nous a pet mis de démontrer qu'une Protéine Kinase C delta (PKC5) active est impliquée dans la transduction du signal lors de la réponse au dex ainsi que celle au TGF-P. Néanmoins, la PKC5 est régulée différemment dans chaque voie spécifique : la voie du TGF-p nécessitait l'activation du PKC5 par diacylglycerol (DAG) et la phosphorylation de tyrosines spécifiques, alors que la voie impliquant les glucocorticoïdes ne le nécessitait pas. Nous avons aussi démontré qu'une tyrosine kinase de la famille Src est responsable de la phosphorylation des tyrosines sur la PKC5. Les essais de kinase in vitro nous ont permis de découvrir que plusieurs Src kinases peuvent phosphoryler la PKC6 dans les cellules B et qu'elles étaient constitutivement actives. Enfin, nous avons montré qu'il existe une interaction protéine - protéine induite par dex, entre le récepteur aux glucocorticoïdes (GR) et la PKC5 dans les cellules B, une association qui n'a pas été démontrée auparavant. Par ailleurs, nous avons analysé les domaines d'interactions entre PKC5 et GR en utilisant les essais de «GST pull-down». Nos résultats montrent que le domaine régulateur de la PKC5 et celui qui interagit avec l'ADN du GR sont impliqués. En résumé, nous avons trouvé que dans une lignée lymphocytaire B, le virus MMTV utilise des mécanismes pour réguler à la fois la transcription et la voie de signalisation qui sont différents de ceux utilisés dans les cellules mammaires épithéliales et les fibroblastes. Nos découvertes pourraient être utilisées comme modèles pour l'étude de gènes cellulaires impliqués dans des processus tels qu'inflammation, immunité ou cancérogénèse. Summary: Mouse Mammary Tumor Virus (MMTV) is a retrovirus that causes tumors in the mammary glands of susceptible female mice and has adapted evolutionarily to be expressed in specialized cells. The B lymphocytes are the first cells to be infected by the MMTV and are essential for the spread of infection to the mammary glands. Here, we used the MMTV as a model system to investigate the signalling cascade induced by giucocorticoids (dexamethasone, "dex", a steroid hormone), and by Transforming Growth Factor-beta (TGF-P, a cytokine) leading to its transcriptional activation in B lymphocytes. By itself, TGF-I3 does not affect the basal activity of the MMTV promoter. However, TGF-13 significantly increases glucocorticoid-induced expression, through its effectors, the Smad factors. Thus, MMTV in B cells demonstrates a novel synergism between glucocorticoids and TGF-16. In this thesis project, we present evidence, based on the use of pharmacological inhibitors and of dominant-negative mutants, that an active Protein Kinase C delta (PKC6) is required as a signal transducer for the dex response and for the TGF-P superinduction as well. The PKC6 is differentially regulated in each specific pathway: whereas the TGF-13 superinduction required PKC6 to be activated by diacylglycerol (DAG) and to be phosphorylated at specific tyrosine residues, the glueocorticoid-induced pathway did not. We also showed that a protein tyrosine kinase of the Src family is responsible for the phosphorylation of tyrosines on PKC6. By performing in vitro kinase assays, we found that several Src kinases of B cells were able to phosphorylate PKC6 and that they were constitutively active. Finally, we demonstrate a dex-dependent functional protein-protein interaction between the glucocorticoid receptor (GR) and PKC6 in B cells, an association that has not been previously described. We further analysed the interacting domains of PKG6 and GR using in vitro GST pull-down assays, whereby the regulatory domain of PKC6 and the extended DNA-binding domain of the GR were involved. In summary, we found that in B-lymphoid cell lines, MMTV uses novel mechanisms of transcriptional control and signal transduction that are different from those at work in mammary epithelial or fibroblastic cells. These findings will be used as model for cellular genes involved in cellular processes such as immune functions, inflammation, or oncogenic transformation that may have a similar pattern of regulation.
Resumo:
Since the turn of the century the complete genome sequence of just one mouse strain, C57BL/6J, has been available. Knowing the sequence of this strain has enabled large-scale forward genetic screens to be performed, the creation of an almost complete set of embryonic stem (ES) cell lines with targeted alleles for protein-coding genes, and the generation of a rich catalog of mouse genomic variation. However, many experiments that use other common laboratory mouse strains have been hindered by a lack of whole-genome sequence data for these strains. The last 5 years has witnessed a revolution in DNA sequencing technologies. Recently, these technologies have been used to expand the repertoire of fully sequenced mouse genomes. In this article we review the main findings of these studies and discuss how the sequence of mouse genomes is helping pave the way from sequence to phenotype. Finally, we discuss the prospects for using de novo assembly techniques to obtain high-quality assembled genome sequences of these laboratory mouse strains, and what advances in sequencing technologies may be required to achieve this goal.