86 resultados para Motion pictures -- Congresses
Resumo:
OBJECT: To study a scan protocol for coronary magnetic resonance angiography based on multiple breath-holds featuring 1D motion compensation and to compare the resulting image quality to a navigator-gated free-breathing acquisition. Image reconstruction was performed using L1 regularized iterative SENSE. MATERIALS AND METHODS: The effects of respiratory motion on the Cartesian sampling scheme were minimized by performing data acquisition in multiple breath-holds. During the scan, repetitive readouts through a k-space center were used to detect and correct the respiratory displacement of the heart by exploiting the self-navigation principle in image reconstruction. In vivo experiments were performed in nine healthy volunteers and the resulting image quality was compared to a navigator-gated reference in terms of vessel length and sharpness. RESULTS: Acquisition in breath-hold is an effective method to reduce the scan time by more than 30 % compared to the navigator-gated reference. Although an equivalent mean image quality with respect to the reference was achieved with the proposed method, the 1D motion compensation did not work equally well in all cases. CONCLUSION: In general, the image quality scaled with the robustness of the motion compensation. Nevertheless, the featured setup provides a positive basis for future extension with more advanced motion compensation methods.
Resumo:
The main objective of the research is to link granular physics with the modelling of rock avalanches. Laboratory experiments consist to find a convenient granular material, i.e. grainsize and physical behaviour, and testing it on simple slope geometry. When the appropriate sliding material is selected, we attempted to model the debris avalanche and the spreading on a slope with different substratum to understand the relationship between the volume and the reach angle, i.e. angle of the line joining the top of the scar and the end of the deposit. For a better understanding of the mass spreading, the deposits are scanned with a laser scanner. Datasets are compared to see how the grain size and volume influence a debris avalanche. The relationship between the roughness and grainsize of the substratum shows that the spreading of the sliding mass is increased when the roughness of the substratum starts to be equivalent or greater than the grainsize of the flowing mass. The runout distance displays a more complex relationship, because a long runout distance implies that grains are less spread. This means that if the substratum is too rough the distance diminishes, as well if it is too smooth because the effect on the apparent friction decreases. Up to now our findings do not permit to validate any previous model (Melosh, 1987; Bagnold 1956).
Resumo:
The murine model of infection with Leishmania major has allowed the demonstration of a causal relationship between, on the one hand, genetically determined resistance to infection and the development of a Th1 CD4+ cell response, and on the other hand, genetically determined susceptibility and Th2 cell maturation. Using this murine model of infection, the role of cytokines in directing the functional differentiation pathway of CD4+ T cell precursors, has been demonstrated in vivo. Thus, IL-12 and IFN-gamma have been shown to favour Th1 cell development and IL-4 is crucial for the differentiation of Th2 responses. Maturation of a Th2 response in susceptible BALB/c mice following infection with L. major is triggered by the IL-4 produced during the first two days after parasite inoculation. This IL-4 rapidly renders parasite specific CD4+ T cells precursors unresponsive to IL-12. A restricted population of CD4+ T cells expressing the V beta 4V alpha 8 TCR heterodimer and recognizing a single epitope on the LACK (Leishmania Activated C-Kinase) antigen of L. major is responsible for this rapid production of IL-4, instructing subsequent differentiation towards the Th2 phenotype of CD4+ T cells specific for several parasite antigens.
Resumo:
PURPOSE: To report a series of patients with cerebellar dysfunction and altered vision during motion, and to quantify their visual impairment in motion with a simple clinical test. METHODS: Twenty consecutive patients suffering from cerebellar dysfunction and altered vision during motion were examined between 1994 and 2007. A control group consisted of 20 age- and sex-matched healthy people. All patients had a full neuro-ophthalmic examination. Near visual acuity (NVA) was measured at rest (static NVA) and during chair rotation (dynamic NVA). Distance visual acuity (DVA) was measured at rest (static DVA) and during rotation of the patient's head (dynamic DVA). RESULTS: Only four of the 20 patients reported altered vision during motion spontaneously. The remaining 16 patients admitted this unusual visual disturbance only when asked specifically. All patients exhibited abnormal eye movements, including saccadic smooth pursuit (20/20), dysmetric saccades (15/20), nystagmus (19/20) and impaired suppression of vestibulo-ocular reflex (VOR) (20/20). During rotation of the examination chair (dynamic NVA), the drop in NVA averaged 5.6 lines (range 1-10 lines). During rotation of the patient's head (dynamic DVA), the drop in DVA averaged only 2.5 lines (range 0-10 lines). For the control group, there was no significant drop in NVA under dynamic conditions. CONCLUSION: Patients with cerebellar dysfunction rarely complain spontaneously of altered vision during motion. However, specific questioning may bring up this unusual symptom. The use of a simple clinical test, consisting of NVA measurement during rotation of the examination chair (dynamic NVA), allows practitioners to quantify the level of visual impairment in patients presenting altered VOR modulation.
Resumo:
OBJECTIVE: Diaphragmatic navigators are frequently used in free-breathing coronary MR angiography, either to gate or prospectively correct slice position or both. For such approaches, a constant relationship between coronary and diaphragmatic displacement throughout the respiratory cycle is assumed. The purpose of this study was to evaluate the relationship between diaphragmatic and coronary artery motion during free breathing. SUBJECTS AND METHODS: A real-time echoplanar MR imaging sequence was used in 12 healthy volunteers to obtain 30 successive images each (one per cardiac cycle) that included the left main coronary artery and the domes of both hemidiaphragms. The coronary artery and diaphragm positions (relative to isocenter) were determined and analyzed for effective diaphragmatic gating windows of 3, 5, and 7 mm (diaphragmatic excursions of 0-3, 0-5, and 0-7 mm from the end-expiratory position, respectively). RESULTS: Although the mean slope correlating the displacement of the right diaphragm and the left main coronary artery was approximately 0.6 for all diaphragmatic gating windows, we also found great variability among individual volunteers. Linear regression slopes varied from 0.17 to 0.93, and r2 values varied from .04 to .87. CONCLUSION: Wide individual variability exists in the relationship between coronary and diaphragmatic respiratory motion during free breathing. Accordingly, coronary MR angiographic approaches that use diaphragmatic navigator position for prospective slice correction may benefit from patient-specific correction factors. Alternatively, coronary MR angiography may benefit from a more direct assessment of the respiratory displacement of the heart and coronary arteries, using left ventricular navigators.
Resumo:
Three-dimensional imaging for the quantification of myocardial motion is a key step in the evaluation of cardiac disease. A tagged magnetic resonance imaging method that automatically tracks myocardial displacement in three dimensions is presented. Unlike other techniques, this method tracks both in-plane and through-plane motion from a single image plane without affecting the duration of image acquisition. A small z-encoding gradient is subsequently added to the refocusing lobe of the slice-selection gradient pulse in a slice following CSPAMM acquisition. An opposite polarity z-encoding gradient is added to the orthogonal tag direction. The additional z-gradients encode the instantaneous through plane position of the slice. The vertical and horizontal tags are used to resolve in-plane motion, while the added z-gradients is used to resolve through-plane motion. Postprocessing automatically decodes the acquired data and tracks the three-dimensional displacement of every material point within the image plane for each cine frame. Experiments include both a phantom and in vivo human validation. These studies demonstrate that the simultaneous extraction of both in-plane and through-plane displacements and pathlines from tagged images is achievable. This capability should open up new avenues for the automatic quantification of cardiac motion and strain for scientific and clinical purposes.
Resumo:
PURPOSE: To determine whether motion preservation following oblique cervical corpectomy (OCC) for cervical spondylotic myelopathy (CSM) persists with serial follow-up. METHODS: We included 28 patients with preoperative and at least two serial follow-up neutral and dynamic cervical spine radiographs who underwent OCC for CSM. Patients with an ossified posterior longitudinal ligament (OPLL) were excluded. Changes in sagittal curvature, segmental and whole spine range of motion (ROM) were measured. Nathan's system graded anterior osteophyte formation. Neurological function was measured by Nurick's grade and modified Japanese Orthopedic Association (JOA) scores. RESULTS: The majority (23 patients) had a single or 2-level corpectomy. The average duration of follow-up was 45 months. The Nurick's grade and the JOA scores showed statistically significant improvements after surgery (p < 0.001). 17% of patients with preoperative lordotic spines had a loss of lordosis at last follow-up, but with no clinical worsening. 77% of the whole spine ROM and 62% of segmental ROM was preserved at last follow-up. The whole spine and segmental ROM decreased by 11.2° and 10.9°, respectively (p ≤ 0.001). Patients with a greater range of segmental movement preoperatively had a statistically greater range of movement at follow-up. The analysis of serial radiographs indicated that the range of movement of the whole spine and the range of movement at the segmental spine levels significantly reduced during the follow-up period. Nathan's grade showed increase in osteophytosis in more than two-thirds of the patients (p ≤ 0.01). The whole spine range of movement at follow-up significantly correlated with Nathan's grade. CONCLUSIONS: Although the OCC preserves segmental and whole spine ROM, serial measurements show a progressive decrease in ROM albeit without clinical worsening. The reduction in this ROM is probably related to degenerative ossification of spinal ligaments.
Resumo:
Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition.
Resumo:
Sophisticated magnetic resonance tagging techniques provide powerful tools for the non-invasive assessment of the local heartwall motion towards a deeper fundamental understanding of local heart function. For the extraction of motion data from the time series of magnetic resonance tagged images and for the visualization of the local heartwall motion a new image analysis procedure has been developed. New parameters have been derived which allows quantification of the motion patterns and are highly sensitive to any changes in these patterns. The new procedure has been applied for heart motion analysis in healthy volunteers and in patient collectives with different heart diseases. The achieved results are summarized and discussed.
Resumo:
BACKGROUND: Whole pelvis intensity modulated radiotherapy (IMRT) is increasingly being used to treat cervical cancer aiming to reduce side effects. Encouraged by this, some groups have proposed the use of simultaneous integrated boost (SIB) to target the tumor, either to get a higher tumoricidal effect or to replace brachytherapy. Nevertheless, physiological organ movement and rapid tumor regression throughout treatment might substantially reduce any benefit of this approach. PURPOSE: To evaluate the clinical target volume - simultaneous integrated boost (CTV-SIB) regression and motion during chemo-radiotherapy (CRT) for cervical cancer, and to monitor treatment progress dosimetrically and volumetrically to ensure treatment goals are met. METHODS AND MATERIALS: Ten patients treated with standard doses of CRT and brachytherapy were retrospectively re-planned using a helical Tomotherapy - SIB technique for the hypothetical scenario of this feasibility study. Target and organs at risk (OAR) were contoured on deformable fused planning-computed tomography and megavoltage computed tomography images. The CTV-SIB volume regression was determined. The center of mass (CM) was used to evaluate the degree of motion. The Dice's similarity coefficient (DSC) was used to assess the spatial overlap of CTV-SIBs between scans. A cumulative dose-volume histogram modeled estimated delivered doses. RESULTS: The CTV-SIB relative reduction was between 31 and 70%. The mean maximum CM change was 12.5, 9, and 3 mm in the superior-inferior, antero-posterior, and right-left dimensions, respectively. The CTV-SIB-DSC approached 1 in the first week of treatment, indicating almost perfect overlap. CTV-SIB-DSC regressed linearly during therapy, and by the end of treatment was 0.5, indicating 50% discordance. Two patients received less than 95% of the prescribed dose. Much higher doses to the OAR were observed. A multiple regression analysis showed a significant interaction between CTV-SIB reduction and OAR dose increase. CONCLUSIONS: The CTV-SIB had important regression and motion during CRT, receiving lower therapeutic doses than expected. The OAR had unpredictable shifts and received higher doses. The use of SIB without frequent adaptation of the treatment plan exposes cervical cancer patients to an unpredictable risk of under-dosing the target and/or overdosing adjacent critical structures. In that scenario, brachytherapy continues to be the gold standard approach.
Resumo:
RATIONALE AND OBJECTIVES: The purpose of this study was the investigation of the impact of real-time adaptive motion correction on image quality in navigator-gated, free-breathing, double-oblique three-dimensional (3D) submillimeter right coronary magnetic resonance angiography (MRA). MATERIALS AND METHODS: Free-breathing 3D right coronary MRA with real-time navigator technology was performed in 10 healthy adult subjects with an in-plane spatial resolution of 700 x 700 microm. Identical double-oblique coronary MR-angiograms were performed with navigator gating alone and combined navigator gating and real-time adaptive motion correction. Quantitative objective parameters of contrast-to-noise ratio (CNR) and vessel sharpness and subjective image quality scores were compared. RESULTS: Superior vessel sharpness, increased CNR, and superior image quality scores were found with combined navigator gating and real-time adaptive motion correction (vs. navigator gating alone; P < 0.01 for all comparisons). CONCLUSION: Real-time adaptive motion correction objectively and subjectively improves image quality in 3D navigator-gated free-breathing double-oblique submillimeter right coronary MRA.