35 resultados para Mosquito nets
Resumo:
Schizophrenia is a neurodevelopmental disorder reflecting a convergence of genetic risk and early life stress. The slow progression to first psychotic episode represents both a window of vulnerability as well as opportunity for therapeutic intervention. Here, we consider recent neurobiological insight into the cellular and molecular components of developmental critical periods and their vulnerability to redox dysregulation. In particular, the consistent loss of parvalbumin-positive interneuron (PVI) function and their surrounding perineuronal nets (PNNs) as well as myelination in patient brains is consistent with a delayed or extended period of circuit instability. This linkage to critical period triggers (PVI) and brakes (PNN, myelin) implicates mistimed trajectories of brain development in mental illness. Strategically introduced antioxidant treatment or later reinforcement of molecular brakes may then offer a novel prophylactic psychiatry.
Resumo:
BACKGROUND: Oxidative stress and the specific impairment of perisomatic gamma-aminobutyric acid circuits are hallmarks of the schizophrenic brain and its animal models. Proper maturation of these fast-spiking inhibitory interneurons normally defines critical periods of experience-dependent cortical plasticity. METHODS: Here, we linked these processes by genetically inducing a redox dysregulation restricted to such parvalbumin-positive cells and examined the impact on critical period plasticity using the visual system as a model (3-6 mice/group). RESULTS: Oxidative stress was accompanied by a significant loss of perineuronal nets, which normally enwrap mature fast-spiking cells to limit adult plasticity. Accordingly, the neocortex remained plastic even beyond the peak of its natural critical period. These effects were not seen when redox dysregulation was targeted in excitatory principal cells. CONCLUSIONS: A cell-specific regulation of redox state thus balances plasticity and stability of cortical networks. Mistimed developmental trajectories of brain plasticity may underlie, in part, the pathophysiology of mental illness. Such prolonged developmental plasticity may, in turn, offer a therapeutic opportunity for cognitive interventions targeting brain plasticity in schizophrenia.
Resumo:
Dopamine release in the prefrontal cortex plays a critical role in cognitive function such as working memory, attention and planning. Dopamine exerts complex modulation on excitability of pyramidal neurons and interneurons, and regulates excitatory and inhibitory synaptic transmission. Because of the complexity of this modulation, it is difficult to fully comprehend the effect of dopamine on neuronal network activity. In this study, we investigated the effect of dopamine on local high-frequency oscillatory neuronal activity (in β band) in slices of the mouse anterior cingulate cortex (ACC). We found that dopamine enhanced the power of these oscillations induced by kainate and carbachol, but did not affect their peak frequency. Activation of D2R and in a lesser degree D1R increased the oscillation power, while activation of D4R had no effect. These high-frequency oscillations in the ACC relied on both phasic inhibitory and excitatory transmission and functional gap junctions. Thus, dopamine released in the ACC promotes high-frequency synchronized local cortical activity which is known to favor information transfer, fast selection and binding of distributed neuronal responses. Finally, the power of these oscillations was significantly enhanced after degradation of the perineuronal nets (PNNs) enwrapping most parvalbumin interneurons. This study provides new insights for a better understanding of the abnormal prefrontal gamma activity in schizophrenia (SZ) patients who display prefrontal anomalies of both the dopaminergic system and the PNNs.
Resumo:
Neutrophil extracellular traps (NETs) formation is a cell death mechanism characterized by the extrusion of DNA fibers associated to antimicrobial peptides such as LL37. Beside their antimicrobial role, NETs are highly immunogenic by their ability to activate plasmacytoid dendritic cells (pDCs). In this context, LL37 binds to NET-DNA, leading to endosomal Toll¬like-receptor (TLR) 9 binding, resulting in Interferon alpha (IFNa) production by pDCs. Uncontrolled pDC activation by NETs is an important player in the pathogenesis of autoimmune disease such as Lupus Erythematosus (LE); however the regulation of NET- driven pDC activation is poorly characterized. Olfactomedin 4 (OLFM4) is a granule protein present in a subset of circulating neutrophils and was shown to bear anti-inflammatory properties in a mouse model, raising the possibility that it may regulate neutrophil-induced inflammation. Therefore, in this project, we aimed at deciphering the mechanism by which OLFM4 may regulate inflammation induced by NET-activated pDC and its relevance in the pathogenesis of Lupus Erythematosus (LE). First, we show that OLFM4 directly interacted with LL37 in neutrophils, impairing LL37/DNA complexes formation and pDC activation to produce IFNa. Then, by using an in vivo model of acute inflammation depending on NET- driven activation of pDCs, we observed that the absence of Olfm4 led to uncontrolled type I IFN production, confirming the regulatory role of neutrophil-derived OLFM4. Beyond controlling NET-induced inflammation, we also show that OLFM4 could inhibit pDC activation mediated by DNA-containing immune complexes (ICs), suggesting that OLFM4 holds anti¬inflammatory properties in the context of LE. Of note, we identified a previously unknown population of OLFM4hi9h neutrophils in healthy individuals that may belong to the immunosuppressive subset of granulocytic myeloid-derived suppressor cells (g-MDSCs). Strikingly, we observed a decreased frequency of OLFM4h'9h cells among inflammatory Low density granulocytes (LDGs) neutrophils in LE patients, suggesting that a disequilibrium between pro- and anti-inflammatory neutrophils may participate to the disease pathogenesis. Altogether, this study demonstrates that OLFM4 is involved in the resolution of inflammation. -- La NETose (formation de Neutrophil Extracellular Traps, NETs) est une réponse à un stimulus inflammatoire caractérisée par l'expulsion de l'ADN lié à des peptides antimicrobiens comme le LL37, induisant la mort de la cellule. Les NETs possèdent des propriétés antibactériennes et sont pro-inflammatoires via leur capacité à activer les cellules dendritiques plasmacytoïdes (pDCs). Dans ce contexte, les complexes ADN/LL37 libérés lient le récepteur Toll-like 9 des pDCs, induisant la production d'Interféron alpha (IFNa). La production incontrôlée d'IFNa par les pDCs est impliquée dans la pathogenèse du Lupus Erythemateux (LE), cependant la régulation de l'activation des pDCs reste mal connue. L'Oflactomédine 4 (OLFM4) est une protéine produite par une sous-population de neutrophiles, avec des propriétés anti-inflammatoires possibles. Le but de ce projet était d'identifier les mécanismes par lesquels l'OLFM4 pourrait réguler l'inflammation induite par les NETs et sa relevance dans la pathogenèse du LE. Tout d'abord, nous avons montré que l'OLFM4 interagissait avec le LL37, empêchant la production des complexes ADN/LL37 qui activent les pDCs. Nous avons vérifié notre hypothèse in vivo en utilisant un modèle murin d'inflammation locale dépendant des pDCs et des NETs. Dans ce contexte, le déficit en Olfm4 était associé à une production accrue d'IFNa, confirmant le rôle de l'OLFM4 dans le contrôle de l'inflammation. De plus, l'OLFM4 pouvait également inhiber l'activation des pDCs induite par des complexes immuns, suggérant que l'OLFM4 serait aussi anti-inflammatoire dans le contexte du LE. Ensuite, nous avons identifié une nouvelle population de neutrophiles OLFM4h'9h chez les sujets sains qui pourraient appartenir au sous-type anti¬inflammatoire des g-MDSCs (granulocytic myeloid-derived suppressor cells). Nous avons observé une diminution de ces cellules parmi les neutrophiles pro-inflammatoires LDGs (Low Density Granulocytes) dans le LE suggérant qu'un déséquilibre entre les sous-types de neutrophiles pourrait participer à l'inflammation excessive de cette maladie. Ces travaux mettent en évidence l'implication de l'OLFM4 dans la résolution de l'inflammation et suggèrent qu'une expression altérée de l'OLFM4 pourrait participer à la pathogenèse du LE. -- Les neutrophils constituent la majorité des globules blancs circulants et sont rapidement mobilisés depuis le sang dans un organe lésé en cas d'infection ou de blessure. Ils représentent la première ligne de défense du système immunitaire. Ils sont indispensables dans la défense contre les infections par leur capacité à tuer les bactéries, par exemple en produisant des peptides antimicrobiens (AMPs) qui fonctionnent comme des antibiotiques naturels. De plus, les neutrophiles recrutent les autres membres du système immunitaire qui sont nécessaires à l'éradication complète des microbes et à la réparation des tissus. Les nombreux outils permettant aux neutrophiles de contrôler les infections ne sont cependant pas sans danger pour les tissus. En effet, diverses molécules comme les AMPs peuvent induire des dommages tissulaires substantiels en participant au développement d'une inflammation chronique. Ceci est particulièrement le cas lorsque les neutrophiles meurent par un processus nommé NETose. Dans ce contexte, la cellule subit une dissolution de sa membrane suivie de l'expulsion de son ADN associé à des AMPs. Ces complexes formés d'ADN et d'AMPs induisent la production de cytokines pro-inflammatoires dont l'Interféron alpha (IFNa). Certaines maladies auto-immunes comme le lupus érythémateux sont associées à un excès de NETose produit par les neutrophiles et à un excès d'IFNa qui participe au développement de la maladie. Dans cette thèse, nous avons montré que l'Olfactomédine 4 (OLFM4), une protéine produite par les neutrophiles eux-mêmes, est un inhibiteur de cette inflammation. Nous avons démontré que TOLFM4 empêchait la formation des complexes ADN/AMPs, réduisant par là la production d'IFNa in vitro et in vivo. Finalement, nos recherches ont suggéré que l'OLFM4 pourrait être insuffisamment produite chez les patients souffrant de lupus, ce qui pourrait participer à l'inflammation chronique associée à la maladie.
Resumo:
Les mécanismes qui régulent le processus de guérison de la peau lésée ne sont pas entièrement compris. Nous avons précédemment montré que les cellules dendritiques plasmocytoïdes (pDCs) sont normalement absentes de la peau saine mais infiltrent rapidement la peau humaine ainsi que celle des souris après une blessure cutanée. Après avoir infiltré la peau, ces pDCs sont capables de détecter les acides nucléiques par l'expression des récepteurs de type Toll 7 et 9 ce qui les active à produire de 1' interféron (IFN) de type I. Ce processus est primordial pour la re- épithélisation des blessures cutanées. Cependant, les mécanismes conduisant à l'infiltration et à 1'activation des pDCs restent inconnus. Dans notre projet, nous montrons que la chimiokine CxcllO est responsable de l'infiltration des pDCs. De façon importante, nous démontrons que les neutrophiles qui infiltrent également la peau lésée sont la source majeure de cette chimiokine. La déplétion des neutrophiles abolit d'ailleurs le recrutement des pDCs confirmant ainsi que CxcllO produit par les neutrophiles est responsable de l'infiltration des pDCs dans la peau endommagée. De façon intéressante, nous avons trouvé que CxcllO en plus de son activité chimiotactique, est capable de former des complexes avec l'ADN et d'activer ainsi les pDCs à produire de l'IFN de type I. De plus, nous avons observé que les neutrophiles qui infiltrent la peau forment des Neutrophil Extracellular Traps (NETs). Ces NETs sont constitués de filaments extracellulaires d'ADN recouverts par de nombreuses protéines principalement d'origine granulaire. D'une manière frappante, le blocage de la NETose ou l'utilisation de souris déficientes pour la formation de NETs altère le recrutement et l'activation des pDCs ainsi que la réponse inflammatoire qui en découle ainsi que le processus de re-epithélisation qui s'ensuit. En prenant en compte toutes ces données, nos résultats démontrent que suite à une blessure de la peau, les neutrophiles par la production de CxcllO contrôlent l'infiltration des pDCs dans la peau lésée et par la formation de NETs, promeuvent l'activation des pDCs. Notre étude fournit donc de nouvelles informations sur les mécanismes de guérison de la peau et ouvre de nouvelles perspectives thérapeutiques quant à la réparation tissulaire de la peau soit dans le but de l'amplifier ou de l'inhiber. -- The mechanisms that regulate healing of the injured skin are not well understood. We have previously shown that plasmacytoid dendritic cells (pDCs) are normally absent from the healthy skin, but rapidly infiltrate both murine and human skin upon injury. Upon skin infiltration, pDCs sense nucleic acids via TLR7/TLR9 and are activated to produce type I interferon (IFN), a process that is crucial for re-epithelialisation of skin wounds. However, the mechanisms that drive pDCs recruitment and activation in injured skin remain unclear. We show that CxcllO is responsible for pDCs infiltration. Importantly, we demonstrate that skin infiltrating neutrophils are the major source of this chemokine. Neutrophils depletion completely abrogated pDCs recruitment confirming that CxcllO- driven pDCs recruitment is controlled by neutrophils. Interestingly, CxcllO was also found to form complexes with DNA and to activate pDCs to produce Type I IFN in addition to its chemotactic activity. Moreover, we observed that infiltrating neutrophils release Neutrophils Extracellular Traps (NETs) composed of DNA filaments decorated with neutrophils-derived proteins. Strikingly, blocking NETosis or using mice deficient for NETs production impaired pDCs recruitment and activation as well as the subsequent inflammatory response and the re-epithelialisation process. Altogether, these data demonstrate that upon skin injury, neutrophils control pDCs infiltration into the injured skin by the release of CxcllO and via the production of NETs, they allow complex formation between CxcllO and NET-DNA leading to pDCs activation. Our findings provide new insights into the mechanisms of wound healing and open new avenues for potential therapeutic interventions to boost or inhibit wound repair in the skin.