420 resultados para Molecular cell assembly
Resumo:
A promising approach to adoptive transfer therapy of tumors is to reprogram autologous T lymphocytes by TCR gene transfer of defined Ag specificity. An obstacle, however, is the undesired pairing of introduced TCRalpha- and TCRbeta-chains with the endogenous TCR chains. These events vary depending on the individual endogenous TCR and they not only may reduce the levels of cell surface-introduced TCR but also may generate hybrid TCR with unknown Ag specificities. We show that such hybrid heterodimers can be generated even by the pairing of human and mouse TCRalpha- and TCRbeta-chains. To overcome this hurdle, we have identified a pair of amino acid residues in the crystal structure of a TCR that lie at the interface of associated TCR Calpha and Cbeta domains and are related to each other by both a complementary steric interaction analogous to a "knob-into-hole" configuration and the electrostatic environment. We mutated the two residues so as to invert the sense of this interaction analogous to a charged "hole-into-knob" configuration. We show that this inversion in the CalphaCbeta interface promotes selective assembly of the introduced TCR while preserving its specificity and avidity for Ag ligand. Noteworthily, this TCR modification was equally efficient on both a Mu and a Hu TCR. Our data suggest that this approach is generally applicable to TCR independently of their Ag specificity and affinity, subset distribution, and species of origin. Thus, this strategy may optimize TCR gene transfer to efficiently and safely reprogram random T cells into tumor-reactive T cells.
Resumo:
The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.
Resumo:
Peripheral T-cell lymphoma, not otherwise specified is a heterogeneous group of aggressive neoplasms with indistinct borders. By gene expression profiling we previously reported unsupervised clusters of peripheral T-cell lymphomas, not otherwise specified correlating with CD30 expression. In this work we extended the analysis of peripheral T-cell lymphoma molecular profiles to prototypical CD30(+) peripheral T-cell lymphomas (anaplastic large cell lymphomas), and validated mRNA expression profiles at the protein level. Existing transcriptomic datasets from peripheral T-cell lymphomas, not otherwise specified and anaplastic large cell lymphomas were reanalyzed. Twenty-one markers were selected for immunohistochemical validation on 80 peripheral T-cell lymphoma samples (not otherwise specified, CD30(+) and CD30(-); anaplastic large cell lymphomas, ALK(+) and ALK(-)), and differences between subgroups were assessed. Clinical follow-up was recorded. Compared to CD30(-) tumors, CD30(+) peripheral T-cell lymphomas, not otherwise specified were significantly enriched in ALK(-) anaplastic large cell lymphoma-related genes. By immunohistochemistry, CD30(+) peripheral T-cell lymphomas, not otherwise specified differed significantly from CD30(-) samples [down-regulated expression of T-cell receptor-associated proximal tyrosine kinases (Lck, Fyn, Itk) and of proteins involved in T-cell differentiation/activation (CD69, ICOS, CD52, NFATc2); upregulation of JunB and MUM1], while overlapping with anaplastic large cell lymphomas. CD30(-) peripheral T-cell lymphomas, not otherwise specified tended to have an inferior clinical outcome compared to the CD30(+) subgroups. In conclusion, we show molecular and phenotypic features common to CD30(+) peripheral T-cell lymphomas, and significant differences between CD30(-) and CD30(+) peripheral T-cell lymphomas, not otherwise specified, suggesting that CD30 expression might delineate two biologically distinct subgroups.
Resumo:
Background: HSTL is a rare entity characterized by an infiltration of bone marrow, spleen and liver tissues by neoplastic gammadelta (gd) -more rarely alphabeta (ab)- T cells. Its pathogenesis is poorly understood. Our purpose was to identify the molecular signature of HSTL and explore molecular pathways implicated in its pathogenesis.Methods: Gene expression profiling and array CGH analysis of 10 HSTL samples (7gd, 3ab), 1 HSTL cell line (DERL2), 2 normal gd samples together with 16 peripheral T-cell lymphoma not otherwise specified (PTCL,NOS) and 7 nasal NK/T cell lymphomas were performed.Results: By unsupervised analysis, ab and gdHSTL clustered together remarkably separated from other lymphoma entities. Compared to PTCL, NOS, HSTL overexpresed genes encoding NK-associated molecules, oncogenes (VAV3) and the Sphingosine-1-phosphatase receptor 5 involved in cell trafficking. Compared to normal gd cells, HSTL overexpressed genes encoding NK-cell and multi drug resistance-associated molecules, transcription factors (RHOB), oncogenes (MAFB, FOS, JUN, VAV3) and the tyrosine kinase SYK whereas genes encoding cytotoxic molecules and the tumor suppressor gene AIM1 were among the most downregulated. By immunohistochemistry, SYK was demonstrated on HSTL cells with expression of its phosphorylated form in DERL2 cells by Western blot. Functional studies using a SYK inhibitor revealed a dose dependent increase of apoptotic DERL2 cells suggesting that SYK could be a candidate target for pharmacologic inhibition. Downexpression of AIM1 was validated by qRT-PCR. Methylation analysis of DERL2 genomic DNA treated by bisulfite demonstrated highly methylated CpG islands of AIM1. Genomic profiles confirmed recurrent isochromosome 7q (n=6/9) without alterations at 9q22 and 6q21 containing SYK and AIM1 genes, respectively.Conclusion: The current study identifies a distinct molecular signature for HSTL and highlights oncogenic pathways which offer rationale for exploring new therapeutic options such as SYK inhibitors. It supports the view of gd and ab HSTL as a single entity.
Resumo:
Cytotoxic CD8 T cells mediate immunity to pathogens and they are able to eliminate malignant cells. Immunity to viruses and bacteria primarily involves CD8 T cells bearing high affinity T cell receptors (TCRs), which are specific to pathogen-derived (non-self) antigens. Given the thorough elimination of high affinity self/tumor-antigen reactive T cells by central and peripheral tolerance mechanisms, anti-cancer immunity mostly depends on TCRs with intermediate-to-low affinity for self-antigens. Because of this, a promising novel therapeutic approach to increase the efficacy of tumor-reactive T cells is to engineer their TCRs, with the aim to enhance their binding kinetics to pMHC complexes, or to directly manipulate the TCR-signaling cascades. Such manipulations require a detailed knowledge on how pMHC-TCR and co-receptors binding kinetics impact the T cell response. In this review, we present the current knowledge in this field. We discuss future challenges in identifying and targeting the molecular mechanisms to enhance the function of natural or TCR-affinity optimized T cells, and we provide perspectives for the development of protective anti-tumor T cell responses.
Resumo:
To complement the existing treatment guidelines for all tumour types, ESMO organises consensus conferences to focus on specific issues in each type of tumour. The Second ESMO Consensus Conference on Lung Cancer was held on 11-12 May 2013 in Lugano. A total of 35 experts met to address several questions on management of patients with non-small-cell lung cancer (NSCLC) in each of four areas: pathology and molecular biomarkers, early stage disease, locally advanced disease and advanced (metastatic) disease. For each question, recommendations were made including reference to the grade of recommendation and level of evidence. This consensus paper focuses on recommendations for pathology and molecular biomarkers in relation to the diagnosis of lung cancer, primarily non-small-cell carcinomas.
Resumo:
Introduction: Les particules de HDL (High Density Lipoproteins) ont des fonctions très diverses notamment anti-inflamatoires, anti-apoptotiques ou anti-oxydatives. Chez les patients diabétiques, les niveaux de HDLs sont bas, les prédisposants ainsi à un risque élévé à développer une maladie cardiovasculaire. Sachant que le s HDLs ont également un effet protecteur sur la cellule beta, le but de cette étude est dinvestigué les mécanismes moléculaires de cette protection contre le stress du réticulum, stress qui contriubue au développement du diabéte de type 2. Résultats: La thapsigargine et la tunicamycine induisent lapoptose en induisant un stress dans le réticulum endoplasmique (RE) par un mauvais repliement des protéines dans le RE, ainsi que l'activation de l'UPR (Unfolded Protein Respons) avec trois voies communes de signalisation intracellulaire (IRE1, PREK et ATF6). Ces voix veillent tout d'abord à augmenter la capacité de repliement des protéines et le cas échéant à lapoptose. Nos résultats montrent que les HDLs sont capable d'inhuber lapoptose induite par la thapsigargine et la tunicamycine dans les MIN6. Dans le cas du traitement avec la thapsigargine, plusieurs marqueurs des voix UPR sont bloqués en présence des HDLs, suggérant que l'effet anti-apoptotiques des HDLs s'exerce au niveau ou en amont du RE. Les HDLS par contre ne bloquent par la sortie de calcium du RE induite par la thapsigargine ce qui indique que les HDLs n'interfèrent pas avec l'action de cette drogue sur sa cible (SERCA). Dans le cas de la la tunicamycine, les HDLs ne bloquent pas, ou très légèrement, l'activation des voix de l'UPR. La protection induite par les HDLs contre la mort engendrée par la tunicamycine s'sexerce dont apparement en aval de l'UPR et reste à être déterminer. Conclusions: Nos données suggérent que les HDLs sont capable de protéger la cellule beta contre le stress du réticulum mais apparement de façon différente selon les modalités d'inductions de ce stress.
Resumo:
The T-cell receptor (TCR) interaction with antigenic peptides (p) presented by the major histocompatibility complex (MHC) molecule is a key determinant of immune response. In addition, TCR-pMHC interactions offer examples of features more generally pertaining to protein-protein recognition: subtle specificity and cross-reactivity. Despite their importance, molecular details determining the TCR-pMHC binding remain unsolved. However, molecular simulation provides the opportunity to investigate some of these aspects. In this study, we perform extensive equilibrium and steered molecular dynamics simulations to study the unbinding of three TCR-pMHC complexes. As a function of the dissociation reaction coordinate, we are able to obtain converged H-bond counts and energy decompositions at different levels of detail, ranging from the full proteins, to separate residues and water molecules, down to single atoms at the interface. Many observed features do not support a previously proposed two-step model for TCR recognition. Our results also provide keys to interpret experimental point-mutation results. We highlight the role of water both in terms of interface resolvation and of water molecules trapped in the bound complex. Importantly, we illustrate how two TCRs with similar reactivity and structures can have essentially different binding strategies. Proteins 2011; © 2011 Wiley-Liss, Inc.
Resumo:
Receptor activity modifying proteins RAMP1, RAMP2, and RAMP3 are responsible for defining affinity to ligands of the calcitonin receptor-like receptor (CRLR). It has also been proposed that receptor activity-modifying proteins (RAMP) are molecular chaperones required for CRLR transport to the cell surface. Here, we have studied the respective roles of CRLR and RAMP in transporting CRLR/RAMP heterodimers to the plasma membrane by using a highly specific binding assay that allows quantitative detection of cell surface-expressed CRLR or RAMP in the Xenopus oocytes expression system. We show that: (i) heterodimer assembly is not a prerequisite for efficient cell surface expression of CRLR, (ii) N-glycosylated RAMP2 and RAMP3 are expressed at the cell surface and their transport to the plasma membrane requires N-glycans, (iii) RAMP1 is not N-glycosylated and is transported to the plasma membrane only upon formation of heterodimers with CRLR, and (iv) introduction of N-glycosylation sites in the RAMP1 sequence (D58N/G60S, Y71N, and K103N/P105S) allows cell surface expression of these mutants at levels similar to that of wild-type RAMP1 co-expressed with CRLR. Our data argue against a chaperone function for RAMP and identify the role of N-glycosylation in targeting these molecules to the cell surface.
Resumo:
Peripheral T-cell lymphomas (PTCLs) encompass a group of rare and usually clinically aggressive diseases. The classification and diagnosis of these diseases are compounded by their marked pathological heterogeneity and complex clinical features. With the exception of ALK-positive anaplastic large cell lymphoma (ALCL), which is defined on the basis of ALK rearrangements, genetic features play little role in the definition of other disease entities. In recent years, hitherto unrecognized chromosomal translocations have been reported in small subsets of PTCLs, and genome-wide array-based profiling investigations have provided novel insights into their molecular characteristics. This article summarizes the current knowledge on the best-characterized genetic and molecular alterations underlying the pathogenesis of PTCLs, with a focus on recent discoveries, their relevance to disease classification, and their management implications from a diagnostical and therapeutical perspective.
Resumo:
Peripheral NK/T-cell lymphoma (PTCL) is a heterogeneous group of uncommon hematologic malignancies with aggressive clinical course and unfavorable prognosis. Extranodal NK/T-cell lymphoma, nasal type (NKTCL) is the most common extranodal entity worldwide, with heterogeneous geographic distribution, and it is characterized by its association with EBV, a nasal or less often extranasal presentation and aggressive behavior. Recent works using array-based technologies have provided novel insights into the pathogenesis and discovered new biomarkers with diagnostic and therapeutic implications in NKTCL. Gene expression profiling identified that most of the NKTCL are derived from activated natural killer cells with distinctively high expression of granzyme H compared to other PTCLs, which might serve as a new diagnostic biomarker. Frequent deletions and promoter methylations in PRDM1, ATG5, AIM1, FOXO3, HACE1 mapping to 6q21-q25, suggest their roles as potential tumor suppressors. The deregulation of oncogenic pathways (PDGF, JAK-STAT, AKT) provides a rationale for developing targeted therapies in the future.
Resumo:
The Xenopus laevis vitellogenin B1 promoter was assembled into nucleosomes in an oocyte extract. Subsequent RNA polymerase II-dependent transcription from these DNA templates fully reconstituted in chromatin in a HeLa nuclear extract was increased 50-fold compared with naked DNA. Remarkably, under specific conditions, production of a high level of transcripts occurred at very low DNA (1 ng/microliter) and HeLa nuclear protein (1.6 micrograms/microliters) concentrations. When partially reconstituted templates were used, transcription efficiency was intermediate between that of fully reconstituted and naked DNA. These results implicate chromatin in the process of the transcriptional activation observed. Depletion from the oocyte assembly extract of an NF-I-like factor which binds in the promoter region upstream of the TATA box (-114 to -101) or deletion from the promoter of the region interacting with this factor reduced the transcriptional efficiency of the assembled templates by a factor of 5, but transcription of these templates was still 10 times higher than that of naked DNA. Together, these results indicate that the NF-I-like factor participates in the very efficient transcriptional potentiation of the vitellogenin B1 promoter which occurs during nucleosome assembly.
Resumo:
Abstract : Activation of naïve T lymphocytes is essential for the onset of an adaptive immune response against a pathogenic threat. T lymphocytes are activated through the engagement of their highly specific cell surface antigen-receptor (TCR), together with co-stimulatory receptors, by activated antigen-presenting cells that display antigenic peptide fragments from the pathogen that they have detected. Dissection of the mechanisms that modulate TCR- and co-stimulation- induced signals is therefore crucial for the understanding of the molelcular basis of adaptive immune responses. Following antigen-receptor triggering, the Carma1, Bcl10 and Malt1 (CBM) proteins assemble into an oligomeric complex, which is essential for activation of the NF-κB and JNK signaling pathways in lymphocytes. In this work, by using human epithelial and lymphocytic cell lines, we identified the TNF-receptor-associated factor (TRAF) proteins TRAF3 and TRAF7 as new binding partners of Bcl10 and Carma1, respectively. We could show that TRAF3 is required for the proper transcriptional upregulation of IL-2 in activated T cells, and that endogenous TRAF3 is recruited to Bcl10 following TCR engagement. Although the mechanisms used by TRAF3 to modulate the transcriptional activation of the IL-2 promoter are not elucidated, the stimulus-dependent association ofTRAF3 with its direct binding partner Bcl10 suggests that TRAF3 is regulating Bcl10 function in TCR-activated lymphocytes. We also demonstrated that TRAF7 acts as a negative regulator of Carma1-induced NFκB-and AP1-dependent transcription by overexpression in 293T cells. These data suggest that TRAF7 could contribute to the negative regulation of TCR-dependent Carma1 functions. Finally, we showed that Carma1 is processed upon antigen-receptor triggering in B and T cell lines, as well as in primary human CTLs, and that this processing is dependent on the proteolytic activity of Malt1. Collectively, this work contributes to describe new proteins and regulatory mechanisms that modulate CBM-dependent functions in activated lymphocytes. Furthermore, it uncovers new tracks that could lead to a better molecular understanding of the complex interplay between the activatory and inhibitory regulators associated with the CBM complex. Résumé : L'activation des lymphocytes T naifs est une étape essentielle à la mise en place d'une réponse immunitaire adaptative pour combattre une infection. Après la détection d'un pathogène, les cellules présentatrices d'antigènes exposent à leur surface des fragments peptidiques provenant du pathogène, qui activent le récepteur à antigène (TCR) spécifique des lymphocytes T, ainsi que des molécules co-stimulatrices qui contribuent à l'activation complète des lymphocytes T. La caractérisation des mécanismes qui modulent les cascades de signaux émanant du TCR et des récepteurs de co-stimulation est essentielle à la compréhension du fonctionnement moléculaire de la réponse immunitaire adaptative. La ligation du TCR induit la formation d'un complexe oligomérique comprenant les protéines Carma1, Bcl10 et Malt1, qui est essentiel à l'activation des voies de signalisation cellulaires NF-κB et JNK induisant l'activation complète des lymphorctes T. Dans cette étude, à l'aide de lignées de cellules humaines épithéliales et lymphocytaires, nous avons identifié que deux protéines de la famille des TRAF (Tumor Necrosis Factor Receptor-Associated Factor), TRAF3 et TRAF7, s'associent à Bc110 et à Carma1, respectivement. Les TRAFs sont d'importants régulateurs des voies de signalisation dans les cellules du système immunitaire inné et adaptatif. Nous avons démontré que TRAF3 était important pour permettre la transcription de l'interleukine-2 (IL-2) dans les lymphocytes T activés, et que TRAF3 s'associait à Bc110 à la suite de la stimulation du TCR Les mécanismes que TRAF3 utilise pour moduler l'activation du promoteur de l'IL-2 ne sont pas connus, mais l'association de TRAF3 à Bc110 suite à la stimulation du TCR suggère que TRAF3 régule la fonction de Bc110. Nous avons également identifié TRAF7 comme un nouveau régulateur négatif des voies NF-κB et JNK induites par surexpression de la protéine Carma1. Nos données suggèrent que TRAF7 pourrait également contribuer à la régulation négative de la fonction de Carma1 dans les lymphocytes activés. Enfin, nous avons découvert que Carma1 était clivé suite à la stimulation du TCR, et que ce clivage dépendait de l'activité protéolytique de Malt1. Cette étude contribue ainsi à la description de nouvelles protéines et de nouveaux mécanismes qui modulent l'activité du complexe CBM dans les lymphocytes activés, et ouvre la voie à la caractérisation moléculaire de ces nouveaux mécanismes importants pour la régulation de la réponse immunitaire adaptative.
Resumo:
Labile or mutation-sensitised proteins may spontaneously convert into aggregation-prone conformations that may be toxic and infectious. This hazardous behavior, which can be described as a form of "molecular criminality", can be actively counteracted in the cell by a network of molecular chaperone and proteases. Similar to law enforcement agents, molecular chaperones and proteases can specifically identify, apprehend, unfold and thus neutralize "criminal" protein conformers, allowing them to subsequently refold into harmless functional proteins. Irreversibly damaged polypeptides that have lost the ability to natively refold are preferentially degraded by highly controlled ATP-consuming proteases. Damaged proteins that escape proteasomal degradation can also be "incarcerated" into dense amyloids, "evicted" from the cell, or internally "exiled" to the lysosome to be hydrolysed and recycled. Thus, remarkable parallels exist between molecular and human forms of criminality, as well as in the cellular and social responses to various forms of crime. Yet, differences also exist: whereas programmed death is the preferred solution chosen by aged and aggregation-stressed cells, collective suicide is seldom chosen by lawless societies. Significantly, there is no cellular equivalent for the role of familial care and of education in general, which is so crucial to the proper shaping of functional persons in the society. Unlike in the cell, humanism introduces a bias against radical solutions such as capital punishment, favouring crime prevention, reeducation and social reinsertion of criminals.
Resumo:
The molecular chaperone Hsp90-dependent proteome represents a complex protein network of critical biological and medical relevance. Known to associate with proteins with a broad variety of functions termed clients, Hsp90 maintains key essential and oncogenic signalling pathways. Consequently, Hsp90 inhibitors are being tested as anti-cancer drugs. Using an integrated systematic approach to analyse the effects of Hsp90 inhibition in T-cells, we quantified differential changes in the Hsp90-dependent proteome, Hsp90 interactome, and a selection of the transcriptome. Kinetic behaviours in the Hsp90-dependent proteome were assessed using a novel pulse-chase strategy (Fierro-Monti et al., accompanying article), detecting effects on both protein stability and synthesis. Global and specific dynamic impacts, including proteostatic responses, are due to direct inhibition of Hsp90 as well as indirect effects. As a result, a decrease was detected in most proteins that changed their levels, including known Hsp90 clients. Most likely, consequences of the role of Hsp90 in gene expression determined a global reduction in net de novo protein synthesis. This decrease appeared to be greater in magnitude than a concomitantly observed global increase in protein decay rates. Several novel putative Hsp90 clients were validated, and interestingly, protein families with critical functions, particularly the Hsp90 family and cofactors themselves as well as protein kinases, displayed strongly increased decay rates due to Hsp90 inhibitor treatment. Remarkably, an upsurge in survival pathways, involving molecular chaperones and several oncoproteins, and decreased levels of some tumour suppressors, have implications for anti-cancer therapy with Hsp90 inhibitors. The diversity of global effects may represent a paradigm of mechanisms that are operating to shield cells from proteotoxic stress, by promoting pro-survival and anti-proliferative functions. Data are available via ProteomeXchange with identifier PXD000537.