54 resultados para Modern aesthetics
Resumo:
Although tissue engineering and cell therapies are becoming realistic approaches for medical therapeutics, it is likely that musculoskeletal applications will be among the first to benefit on a large scale. Cell sources for tissue engineering and cell therapies for tendon pathologies are reviewed with an emphasis on small defect tendon injuries as seen in the hand which could adapt well to injectable cell administration. Specifically, cell sources including tenocytes, tendon sheath fibroblasts, bone marrow or adipose-derived stem cells, amniotic cells, placenta cells and platelet-derivatives have been proposed to enhance tendon regeneration. The associated advantages and disadvantages for these different strategies will be discussed and evolving regulatory requirements for cellular therapies will also be addressed. Human progenitor tenocytes, along with their clinical cell banking potential, will be presented as an alternative cell source solution. Similar cell banking techniques have already been described with other progenitor cell types in the 1950's for vaccine production, and these "old" cell types incite potentially interesting therapeutic options that could be improved with modern innovation for tendon regeneration and repair.
Resumo:
The majority of terrestrial plants live in association with symbiotic fungi that facilitate mineral nutrient uptake. The oldest and most prevalent of these associations are the arbuscular mycorrhizal (AM) symbioses that first evolved approximately 400 million years ago, coinciding with the appearance of the first land plants. Crop domestication, in comparison, is a relatively recent event, beginning approximately 10000 years ago. How has the dramatic change from wild to cultivated ecosystems impacted AM associations, and do these ancient symbioses potentially have a role in modern agriculture? Here, we review recent advances in AM research and the use of breeding approaches to generate new crop varieties that enhance the agronomic potential of AM associations.
Resumo:
This work compares the detector performance and image quality of the new Kodak Min-R EV mammography screen-film system with the Fuji CR Profect detector and with other current mammography screen-film systems from Agfa, Fuji and Kodak. Basic image quality parameters (MTF, NPS, NEQ and DQE) were evaluated for a 28 kV Mo/Mo (HVL = 0.646 mm Al) beam using different mAs exposure settings. Compared with other screen-film systems, the new Kodak Min-R EV detector has the highest contrast and a low intrinsic noise level, giving better NEQ and DQE results, especially at high optical density. Thus, the properties of the new mammography film approach those of a fine mammography detector, especially at low frequency range. Screen-film systems provide the best resolution. The presampling MTF of the digital detector has a value of 15% at the Nyquist frequency and, due to the spread size of the laser beam, the use of a smaller pixel size would not permit a significant improvement of the detector resolution. The dual collection reading technology increases significantly the low frequency DQE of the Fuji CR system that can at present compete with the most efficient mammography screen-film systems.
Resumo:
Rare earth elements (REE), while not essential for the physiologic functions of animals, are ingested and incorporated in ppb concentrations in bones and teeth. Nd isotope compositions of modern bones of animals from isotopically distinct habitats demonstrate that the (143)Nd/(144)Nd of the apatite can be used as a fingerprint for bedrock geology or ambient water mass. This potentially allows the provenance and migration of extant vertebrates to be traced, similar to the use of Sr isotopes. Although REE may be enriched by up to 5 orders of magnitude during diagenesis and recrystallization of bone apatite, in vivo (143)Nd/(144)Nd may be preserved in the inner cortex of fossil bones or enamel. However, tracking the provenance of ancient or extinct vertebrates is possible only for well-preserved archeological and paleontological skeletal remains with in vivo-like Nd contents at the ppb-level. Intra-bone and -tooth REE analysis can be used to screen for appropriate areas. Large intra-bone Nd concentration gradients of 10(1)-10(3) are often measured. Nd concentrations in the inner bone cortex increase over timescales of millions of years, while bone rims may be enriched over millenial timescales. Nevertheless, epsilon(Nd) values are often similar within one epsilon(Nd) unit within a single bone. Larger intra-bone differences in specimens may either reflect a partial preservation of in vivo values or changing epsilon(Nd) values of the diagenetic fluid during fossilization. However, most fossil specimens and the outer rims of bones will record taphonomic (143)Nd/(144)Nd incorporated post mortem during diagenesis. Unlike REE patterns, (143)Nd/(144)Nd are not biased by fractionation processes during REE-uptake into the apatite crystal lattice, hence the epsilon(Nd) value is an important tracer for taphonomy and reworking. Bones and teeth from autochthonous fossil assemblages have small variations of +/- 1 epsilon(Nd) unit only. In contrast, fossil bones and teeth from over 20 different marine and terrestrial fossil sites have a total range of epsilon(Nd) values from -13.0 to 4.9 (n = 80), often matching the composition of the embedding sediment. This implies that the surrounding sediment is the source of Nd in the fossil bones and that the specimens of this study seem not to have been reworked. Differences in epsilon(Nd) values between skeletal remains and embedding sediment may either indicate reworking of fossils and/or a REE-uptake from a diagenetic fluid with non-sediment derived epsilon(Nd) values. The latter often applies to fossil shark teeth, which may preserve paleo-seawater values. Complementary to epsilon(Nd) values, (87)Sr/(86)Sr can help to further constrain the fossil provenance and reworking. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Estimation of the dimensions of fluvial geobodies from core data is a notoriously difficult problem in reservoir modeling. To try and improve such estimates and, hence, reduce uncertainty in geomodels, data on dunes, unit bars, cross-bar channels, and compound bars and their associated deposits are presented herein from the sand-bed braided South Saskatchewan River, Canada. These data are used to test models that relate the scale of the formative bed forms to the dimensions of the preserved deposits and, therefore, provide an insight as to how such deposits may be preserved over geologic time. The preservation of bed-form geometry is quantified by comparing the Alluvial architecture above and below the maximum erosion depth of the modem channel deposits. This comparison shows that there is no significant difference in the mean set thickness of dune cross-strata above and below the basal erosion surface of the contemporary channel, thus suggesting that dimensional relationships between dune deposits and the formative bed-form dimensions are likely to be valid from both recent and older deposits. The data show that estimates of mean bankfull flow depth derived from dune, unit bar, and cross-bar channel deposits are all very similar. Thus, the use of all these metrics together can provide a useful check that all components and scales of the alluvial architecture have been identified correctly when building reservoir models. The data also highlight several practical issues with identifying and applying data relating to cross-strata. For example, the deposits of unit bars were found to be severely truncated in length and width, with only approximately 10% of the mean bar-form length remaining, and thus making identification in section difficult. For similar reasons, the deposits of compound bars were found to be especially difficult to recognize, and hence, estimates of channel depth based on this method may be problematic. Where only core data are available (i.e., no outcrop data exist), formative flow depths are suggested to be best reconstructed using cross-strata formed by dunes. However, theoretical relationships between the distribution of set thicknesses and formative dune height are found to result in slight overestimates of the latter and, hence, mean bankfull flow depths derived from these measurements. This article illustrates that the preservation of fluvial cross-strata and, thus, the paleohydraulic inferences that can be drawn from them, are a function of the ratio of the size and migration rate of bed forms and the time scale of aggradation and channel migration. These factors must thus be considered when deciding on appropriate length:thickness ratios for the purposes of object-based modeling in reservoir characterization.
Resumo:
The objective of the present study was longitudinal evaluation of the volumetric tumor response and functional results after Gamma Knife radiosurgery of vestibular schwannomas, performed according to the modern standards of treatment. From October 2003 to September 2007, 133 consecutive patients with vestibular schwannomas were treated according to the concept of robotic Gamma Knife microradiosurgery, which is based on precise irradiation of the lesion, sparing adjacent structures, and delivery of the high radiation energy to the target. Multiple small-sized isocenters located within the border of the neoplasm were applied. The mean marginal dose was 11.5 Gy (range, 11-12 Gy). In total, 126 cases with a minimum posttreatment follow-up of 2 years (range, 2-7 years; median, 4 years) were analyzed. Temporary enlargement was noted in 25 % of tumors at 6 months after radiosurgery. At 3 years of follow-up, tumor shrinkage, stabilization, and increase in volume were marked in 73 %, 23 %, and 4 % of cases, respectively. All progressing lesions spontaneously stabilized later on and did not require additional management. In 3 % of patients, transitory impairment of the facial nerve function was marked; however, neither its permanent dysfunction nor trigeminal neuropathy attributed to radiosurgery was noted. Impairment of hearing compared to its pretreatment level was revealed in 4 %, 12 %, 13 %, and 16 % of patients at 6 months, 1 year, 2 years, and 3 years after radiosurgery, respectively, and this trend was statistically significant (P = 0.0042). Overall, 77 % of patients with serviceable hearing before treatment preserved it 3 years thereafter. In conclusion, modern Gamma Knife radiosurgery provides effective and safe management of vestibular schwannomas. Nevertheless, possible temporary tumor enlargement, delay of its growth arrest, transient dysfunction of the cranial nerves, and gradual deterioration of hearing after irradiation should be always taken into consideration.