67 resultados para Micro and small companies
Resumo:
Cancer genomes frequently contain somatic copy number alterations (SCNA) that can significantly perturb the expression level of affected genes and thus disrupt pathways controlling normal growth. In melanoma, many studies have focussed on the copy number and gene expression levels of the BRAF, PTEN and MITF genes, but little has been done to identify new genes using these parameters at the genome-wide scale. Using karyotyping, SNP and CGH arrays, and RNA-seq, we have identified SCNA affecting gene expression ('SCNA-genes') in seven human metastatic melanoma cell lines. We showed that the combination of these techniques is useful to identify candidate genes potentially involved in tumorigenesis. Since few of these alterations were recurrent across our samples, we used a protein network-guided approach to determine whether any pathways were enriched in SCNA-genes in one or more samples. From this unbiased genome-wide analysis, we identified 28 significantly enriched pathway modules. Comparison with two large, independent melanoma SCNA datasets showed less than 10% overlap at the individual gene level, but network-guided analysis revealed 66% shared pathways, including all but three of the pathways identified in our data. Frequently altered pathways included WNT, cadherin signalling, angiogenesis and melanogenesis. Additionally, our results emphasize the potential of the EPHA3 and FRS2 gene products, involved in angiogenesis and migration, as possible therapeutic targets in melanoma. Our study demonstrates the utility of network-guided approaches, for both large and small datasets, to identify pathways recurrently perturbed in cancer.
Resumo:
INTRODUCTION: Squamous-cell carcinoma of the head and neck (SCCHN) remains a challenging clinical problem, due to the persistent high rate of local and distant failures and the occurrence of secondary primaries. For locally advanced SCCHN, a combination of chemotherapy (CT), radiation or surgery is often used, but there are limitations, which may reduce compliance. Molecular targeted therapies, namely anti-EGFR treatments, are in development with the aim of improving clinical outcomes and mitigating treatment-related toxicities. AREAS COVERED: This review provides an overview of early investigational drugs that target EGFR for the treatment of SCCHN and discusses the ongoing trials in this domain. EXPERT OPINION: Targeted therapies are increasingly used in oncology, especially in SCCHN. Cetuximab has demonstrated a significant improvement in the treatment outcome, both as a curative treatment in combination with radiation therapy and as a palliative treatment in combination with CT; however, it failed to show any benefit in combination with concomitant chemoradiotherapy. Presently, there are many new agents, including monoclonal antibodies and small-molecule tyrosine kinase inhibitors, which are either currently under investigation for or which warrant further investigation for treating SCCHN. The discovery of predictive factors that help to identify patients most likely to respond to EGFR inhibitors as well as patient-customized therapies would help to improve patient outcomes in the future.
Resumo:
Recent studies at high magnetic fields using the phase of gradient-echo MR images have shown the ability to unveil cortical substructure in the human brain. To investigate the contrast mechanisms in phase imaging, this study extends, for the first time, phase imaging to the rodent brain. Using a 14.1 T horizontal bore animal MRI scanner for in vivo micro-imaging, images with an in-plane resolution of 33 microm were acquired. Phase images revealed, often more clearly than the corresponding magnitude images, hippocampal fields, cortical layers (e.g. layer 4), cerebellar layers (molecular and granule cell layers) and small white matter structures present in the striatum and septal nucleus. The contrast of the phase images depended in part on the orientation of anatomical structures relative to the magnetic field, consistent with bulk susceptibility variations between tissues. This was found not only for vessels, but also for white matter structures, such as the anterior commissure, and cortical layers in the cerebellum. Such susceptibility changes could result from variable blood volume. However, when the deoxyhemoglobin content was reduced by increasing cerebral blood flow (CBF) with a carbogen breathing challenge, contrast between white and gray matter and cortical layers was not affected, suggesting that tissue cerebral blood volume (and therefore deoxyhemoglobin) is not a major source of the tissue phase contrast. We conclude that phase variations in gradient-echo images are likely due to susceptibility shifts of non-vascular origin.
Resumo:
Whirligig beetles (Gyrinidae) inhabit water surfaces and possess unique eyes which are split into the overwater and underwater parts. In this study we analyze the micro- and nanostructure of the split eyes of two Gyrinidae beetles genera, Gyrinus and Orectochilus. We find that corneae of the overwater ommatidia are covered with maze-like nanostructures, while the corneal surface of the underwater eyes is smooth. We further show that the overwater nanostructures possess no anti-wetting, but the anti-reflective properties with the spectral preference in the range of 450-600 nm. These findings illustrate the adaptation of the corneal nanocoating of the two halves of an insect's eye to two different environments. The novel natural anti-reflective nanocoating we describe may find future technological applications.
Resumo:
Despite the advancement of phylogenetic methods to estimate speciation and extinction rates, their power can be limited under variable rates, in particular for clades with high extinction rates and small number of extant species. Fossil data can provide a powerful alternative source of information to investigate diversification processes. Here, we present PyRate, a computer program to estimate speciation and extinction rates and their temporal dynamics from fossil occurrence data. The rates are inferred in a Bayesian framework and are comparable to those estimated from phylogenetic trees. We describe how PyRate can be used to explore different models of diversification. In addition to the diversification rates, it provides estimates of the parameters of the preservation process (fossilization and sampling) and the times of speciation and extinction of each species in the data set. Moreover, we develop a new birth-death model to correlate the variation of speciation/extinction rates with changes of a continuous trait. Finally, we demonstrate the use of Bayes factors for model selection and show how the posterior estimates of a PyRate analysis can be used to generate calibration densities for Bayesian molecular clock analysis. PyRate is an open-source command-line Python program available at http://sourceforge.net/projects/pyrate/.
Resumo:
Two granitic plutons, the Tso Morari gneiss and the Rupshu metagranite, crop out in the Tso Morari area. The Polokongka La granite, classically interpreted as a young intrusion in the Tso Morari gneiss, has been recognized as the undeformed facies of the latter. Conventional isotope dilution U-Pb zircon dating on single-grain and small multi-grain fractions yielded magmatic ages of 479 +/- 2 Ma for the Tso Morari gneiss and the Polokongka La granite, and 482.5 +/- 1 Ma for the Rupshu granite. There is a great difference in zircon morphology between the Tso Morari gneiss (peraluminous type) and the Rupshu granite (alkaline type). This difference is confirmed by whole-rock chemistry. The Tso Morari gneiss is a typical deformed S-type granite, resulting from crustal anatexis. On the other hand, the Rupshu granite is an essentially metaluminous alkali-calcic intrusion derived from a different source material. Data compilation from other Himalayan Cambro-Ordovician granites reveals huge and widespread magmatic activity all along and beyond the northern Indian plate between 570 and 450 Ma, with a peak at 500-480 Ma. A major, continental-scale tectonic event is required to generate such a large magmatic belt; it has been tentatively compared to the Variscan post-orogenic extensional regime of Western Europe, as a late evolution stage of a Pan-African orogenic event.
Resumo:
? Introduction ? Bone fracture healing and healing problems ? Biomaterial scaffolds and tissue engineering in bone formation - Bone tissue engineering - Biomaterial scaffolds - Synthetic scaffolds - Micro- and nanostructural properties of scaffolds - Conclusion ? Mesenchymal stem cells and osteogenesis - Bone tissue - Origin of osteoblasts - Isolation and characterization of bone marrow derived MSC - In vitro differentiation of MSC into osteoblast lineage cells - In vivo differentiation of MSC into bone - Factors and pathways controlling osteoblast differentiation of hMSC - Defining the relationship between osteoblast and adipocyte differentiation from MSC - MSC and sex hormones - Effect of aging on osteoblastogenesis - Conclusion ? Embryonic, foetal and adult stem cells in osteogenesis - Cell-based therapies for bone - Specific features of bone cells needed to be advantageous for clinical use - Development of therapeutic biological agents - Clinical application concerns - Conclusion ? Platelet-rich plasma (PRP), growth factors and osteogenesis - PRP effects in vitro on the cells involved in bone repair - PRP effects on osteoblasts - PRP effects on osteoclasts - PRP effects on endothelial cells - PRP effects in vivo on experimental animals - The clinical use of PRP for bone repair - Non-union - Distraction osteogenesis - Spinal fusion - Foot and ankle surgery - Total knee arthroplasty - Odontostomatology and maxillofacial surgery - Conclusion ? Molecular control of osteogenesis - TGF-β signalling - FGF signalling - IGF signalling - PDGF signalling - MAPK signalling pathway - Wnt signalling pathway - Hedgehog signalling - Notch signalling - Ephrin signalling - Transcription factors regulating osteoblast differentiation - Conclusion ? Summary This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed.
Resumo:
The occurrence of microvascular and small macrovascular lesions and Alzheimer's disease (AD)-related pathology in the aging human brain is a well-described phenomenon. Although there is a wide consensus about the relationship between macroscopic vascular lesions and incident dementia, the cognitive consequences of the progressive accumulation of these small vascular lesions in the human brain are still a matter of debate. Among the vast group of small vessel-related forms of ischemic brain injuries, the present review discusses the cognitive impact of cortical microinfarcts, subcortical gray matter and deep white matter lacunes, periventricular and diffuse white matter demyelinations, and focal or diffuse gliosis in old age. A special focus will be on the sub-types of microvascular lesions not detected by currently available neuroimaging studies in routine clinical settings. After providing a critical overview of in vivo data on white matter demyelinations and lacunes, we summarize the clinicopathological studies performed by our center in large cohorts of individuals with microvascular lesions and concomitant AD-related pathology across two age ranges (the younger old, 65-85 years old, versus the oldest old, nonagenarians and centenarians). In conjunction with other autopsy datasets, these observations fully support the idea that cortical microinfarcts are the only consistent determinant of cognitive decline across the entire spectrum from pure vascular cases to cases with combined vascular and AD lesion burden.
Resumo:
We analyse the strategic behaviours of agents in a market through the appropriate¬ness of their skills to the market. If agents' skills are well adapted to market and they can reach their target, they will not need to adopt strategic behaviours. The agents will behave as selfish individuals. However, if their skills are not well adapted and they cannot attain their target alone, they will adopt strategic behaviours to reach their objectives. These behaviours will have a different impact on the utilities of other agents, depending on the skills and the objectives of the agent. If these agents need other agents to reach their objectives, they will behave as altruistic individuals who internalise the utilities of other agents in reaching their objectives and will adopt cooperative behaviours. However, if these agents fear that other agents could prevent them from reaching their target because they can foresee that the skills of other agents are better adapted than their own skills, the agents will then behave as predator individuals and will adopt destructive behaviours to attain their objective. It is in the interests of these agents to manipulate information to increase disorder and dissimulate their lack of skills. They will reproduce the strategies of animals that modify their appearance to escape predators or simulate being bait to attract their prey. These agents will seek to induce chaos into the behaviours of other agents to amplify the impact of their strategies. The appropriateness of skills to the market allows an understanding of the emer-gence of networks and associated strategies. The members of a networks are inputs who are excluded when their costs are higher than their benefits. A network simul-taneously allows cooperation and selfish, predatory behaviours among its members. A network may adopt informational strategies when seeking to become the leader in a market or when it cannot survive. The creation of networks and the manipulation of information are two overlapping evolutionary strategies, with the first strategy favouring the second. In our model, an agent does not behave like a firm that aims only to maximise the profits of the firm but rather as a member of a network who adopts strategic behaviours as a function of the interests of this network. If his skills are well adapted to the market and he can innovate, he will not invest in erroneous input; in contrast, if his skills are not adapted, the agent will invest in the erroneous input of information into the market in order to survive. Therefore, when any informational asymmetries between the agents and their principals characterise the market, the price cannot be the main element that allows equilibrium to be reached in the market; instead, the appropriateness of skills to the market enables equilibrium. We will now apply these hypotheses to explain the strategic behaviours of physicians and pharmaceutical companies.
Resumo:
The formation of a 'tumor-associated vasculature', a process referred to as tumor angiogenesis, is a stromal reaction essential for tumor progression. Inhibition of tumor angiogenesis suppresses tumor growth in many experimental models, thereby indicating that tumor-associated vasculature may be a relevant target to inhibit tumor progression. Among the antiangiogenic molecules reported to date many are peptides and proteins. They include cytokines, chemokines, antibodies to vascular growth factors and growth factor receptors, soluble receptors, fragments derived from extracellular matrix proteins and small synthetic peptides. The polypeptide tumor necrosis factor (TNF, Beromun) was the first drug registered for the regional treatment of human cancer, whose mechanisms of action involved selective disruption of the tumor vasculature. More recently, bevacizumab (Avastin), an antibody against vascular endothelial growth factor (VEGF)-A, was approved as the first systemic antiangiogenic drug that had a significant impact on the survival of patients with advanced colorectal cancer, in combination with chemotherapy. Several additional peptides and antibodies with antiangiogenic activity are currently tested in clinical trials for their therapeutic efficacy. Thus, peptides, polypeptides and antibodies are emerging as leading molecules among the plethora of compounds with antiangiogenic activity. In this article, we will review some of these molecules and discuss their mechanism of action and their potential therapeutic use as anticancer agents in humans.
Resumo:
Autoimmune glomerulopathies are an important cause of chronic kidney disease. Conventional treatments based on steroids, antiproliferative and cytotoxic agents are efficacious, but highly toxic. Because of their central role in the pathogenesis of autoimmunity, B cells have become an attractive therapeutic target. Rituximab is a monoclonal antibody directed against CD20 expressed on the surface of B cells, inducing profound depletion of B cells in the peripheral blood. In spite of encouraging results regarding the off-label use of Rituximab in membranous nephropathy, systemic lupus erythematosus and small vessel vasculitis, controlled, long-term data, and data with specific renal endpoints are currently lacking.
Resumo:
BACKGROUND: Strategies to dissect phenotypic and genetic heterogeneity of major depressive disorder (MDD) have mainly relied on subphenotypes, such as age at onset (AAO) and recurrence/episodicity. Yet, evidence on whether these subphenotypes are familial or heritable is scarce. The aims of this study are to investigate the familiality of AAO and episode frequency in MDD and to assess the proportion of their variance explained by common single nucleotide polymorphisms (SNP heritability). METHOD: For investigating familiality, we used 691 families with 2-5 full siblings with recurrent MDD from the DeNt study. We fitted (square root) AAO and episode count in a linear and a negative binomial mixed model, respectively, with family as random effect and adjusting for sex, age and center. The strength of familiality was assessed with intraclass correlation coefficients (ICC). For estimating SNP heritabilities, we used 3468 unrelated MDD cases from the RADIANT and GSK Munich studies. After similarly adjusting for covariates, derived residuals were used with the GREML method in GCTA (genome-wide complex trait analysis) software. RESULTS: Significant familial clustering was found for both AAO (ICC = 0.28) and episodicity (ICC = 0.07). We calculated from respective ICC estimates the maximal additive heritability of AAO (0.56) and episodicity (0.15). SNP heritability of AAO was 0.17 (p = 0.04); analysis was underpowered for calculating SNP heritability of episodicity. CONCLUSIONS: AAO and episodicity aggregate in families to a moderate and small degree, respectively. AAO is under stronger additive genetic control than episodicity. Larger samples are needed to calculate the SNP heritability of episodicity. The described statistical framework could be useful in future analyses.
Resumo:
To date, only a couple of functional MR spectroscopy (fMRS) studies were conducted in rats. Due to the low temporal resolution of (1)H MRS techniques, prolonged stimulation paradigms are necessary for investigating the metabolic outcome in the rat brain during functional challenge. However, sustained activation of cortical areas is usually difficult to obtain due to neural adaptation. Anesthesia, habituation, high variability of the basal state metabolite concentrations as well as low concentrations of the metabolites of interest such as lactate (Lac), glucose (Glc) or γ-aminobutyric acid (GABA) and small expected changes of metabolite concentrations need to be addressed. In the present study, the rat barrel cortex was reliably and reproducibly activated through sustained trigeminal nerve (TGN) stimulation. In addition, TGN stimulation induced significant positive changes in lactate (+1.01μmol/g, p<0.008) and glutamate (+0.92μmol/g, p<0.02) and significant negative aspartate changes (-0.63μmol/g, p<0.004) using functional (1)H MRS at 9.4T in agreement with previous changes observed in human fMRS studies. Finally, for the first time, the dynamics of lactate, glucose, aspartate and glutamate concentrations during sustained somatosensory activation in rats using fMRS were assessed. These results allow demonstrating the feasibility of fMRS measurements during prolonged barrel cortex activation in rats.
Resumo:
Calbindin and calretinin are two homologous calcium-binding proteins that are expressed by subpopulations of primary sensory neurons. In the present work, we have studied the distribution of the neurons expressing calbindin and calretinin in dorsal root ganglia of the rat and their peripheral projections. Calbindin and calretinin immunoreactivities were expressed by subpopulations of large- and small-sized primary sensory neurons and colocalized in a majority of large-sized ones. The axons emerging from calbindin- or calretinin-immunoreactive neurons innervated muscle spindles, Pacini corpuscles and subepidermal lamellar corpuscles in the glabrous skin, formed palisades of lanceolate endings around hairs and vibrissae, and gave rise to intraepidermal nerve endings in the digital skin. Since most of these afferents are considered as rapidly adapting mechanoreceptors, it is concluded that calbindin- or calretinin-expressing neurons innervate particular mechanoreceptors that display physiological characteristics of rapid adaptation to stimuli.