67 resultados para Metal ion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion channels and transporters play a critical role in ion and fluid homeostasis and thus in normal animal physiology and pathology. Tight regulation of these transmembrane proteins is therefore essential. In recent years, many studies have focused their attention on the role of the ubiquitin system in regulating ion channels and transporters, initialed by the discoveries of the role of this system in processing of Cystic Fibrosis Transmembrane Regulator (CFTR), and in regulating endocytosis of the epithelial Na(+) channel (ENaC) by the Nedd4 family of ubiquitin ligases (mainly Nedd4-2). In this review, we discuss the role of the ubiquitin system in ER Associated Degradation (ERAD) of ion channels, and in the regulation of endocytosis and lysosomal sorting of ion channels and transporters, focusing primarily in mammalian cells. We also briefly discuss the role of ubiquitin like molecules (such as SUMO) in such regulation, for which much less is known so far.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alpha1-Acid glycoprotein (AAG) or orosomucoid was purified to homogeneity from human plasma by a separate two-step method using chromatography on immobilized Cibacron Blue F3G-A to cross-linked agarose and chromatography on hydroxyapatite. The conditions for the pre-purification of AAG by chromatography on immobilized Cibacron Blue F3G-A were first optimized using different buffer systems with different pH values. The overall yield of the combined techniques was 80% and ca. 12 mg of AAG were purified from an initial total amount of ca. 15 mg in a ca. 40 ml sample of human plasma. This method was applied to the purification of AAG samples corresponding to the three main phenotypes of the protein (FI*S/A, F1/A and S/A), from individual human plasma previously phenotyped for AAG. A study by isoelectric focusing with carrier ampholytes showed that the microheterogeneity of the purified F1*S/A, F1/A and S/A AAG samples was similar to that of AAG in the corresponding plasma, thus suggesting that no apparent desialylation of the glycoprotein occurred during the purification steps. This method was also applied to the purification of AAG samples corresponding to rare phenotypes of the protein (F1/A*AD, S/A*X0 and F1/A*C1) and the interactions of these variants with immobilized copper(II) ions were then studied at pH 7, by chromatography on an iminodiacetate Sepharose-Cu(II) gel. It was found that the different variants encoded by the first of the two genes coding for AAG in humans (i.e. the F1 and S variants) interacted non-specifically with the immobilized ligand, whereas those encoded by the second gene of AAG (i.e. the A, AD, X0 and C1 variants) strongly bound to immobilized Cu(II) ions. These results suggested that chromatography on an immobilized affinity Cu(II) adsorbent could be helpful to distinguish between the respective products of the two highly polymorphic genes which code for human AAG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are non-voltage-gated sodium channels activated by an extracellular acidification. They are widely expressed in neurons of the central and peripheral nervous system. ASICs have a role in learning, the expression of fear, in neuronal death after cerebral ischemia, and in pain sensation. Tissue damage leads to the release of inflammatory mediators. There is a subpopulation of sensory neurons which are able to release the neuropeptides calcitonin gene-related peptide (CGRP) and substance P (SP). Neurogenic inflammation refers to the process whereby peripheral release of the neuropeptides CGRP and SP induces vasodilation and extravasation of plasma proteins, respectively. Our laboratory has previously shown that calcium-permeable homomeric ASIC1a channels are present in a majority of CGRP- or SP-expressing small diameter sensory neurons. In the first part of my thesis, we tested the hypothesis that a local acidification can produce an ASIC-mediated calcium-dependant neuropeptide secretion. We have first verified the co-expression of ASICs and CGRP/SP using immunochemistry and in-situ hybridization on dissociated rat dorsal root ganglion (DRG) neurons. We found that most CGRP/SP-positive neurons also expressed ASIC1a and ASIC3 subunits. Calcium imaging experiments with Fura-2 dye showed that an extracellular acidification can induce an increase of intracellular Ca2+ concentration, which is essential for secretion. This increase of intracellular Ca2+ concentration is, at least in some cells, ASIC-dependent, as it can be prevented by amiloride, an ASIC antagonist, and by Psalmotoxin (PcTx1), a specific ASIC1a antagonist. We identified a sub-population of neurons whose acid-induced Ca2+ entry was completely abolished by amiloride, an amiloride-resistant population which does not express ASICs, but rather another acid-sensing channel, possibly transient receptor potential vanilloïde 1 (TRPV1), and a population expressing both H+-gated channel types. Voltage-gated calcium channels (Cavs) may also mediate Ca2+ entry. Co-application of the Cavs inhibitors (ω-conotoxin MVIIC, Mibefradil and Nifedipine) reduced the Ca2+ increase in neurons expressing ASICs during an acidification to pH 6. This indicates that ASICs can depolarise the neuron and activate Cavs. Homomeric ASIC1a are Ca2+-permeable and allow a direct entry of Ca2+ into the cell; other ASICs mediate an indirect entry of Ca2+ by inducing a membrane depolarisation that activates Cavs. We showed with a secretion assay that CGRP secretion can be induced by extracellular acidification in cultured rat DRG neurons. Amiloride and PcTx1 were not able to inhibit the secretion at acidic pH, but BCTC, a TRPV1 inhibitor was able to decrease the secretion induced by an extracellular acidification in our in vitro secretion assay. In conclusion, these results show that in DRG neurons a mild extracellular acidification can induce a calcium-dependent neuropeptide secretion. Even if our data show that ASICs can mediate an increase of intracellular Ca2+ concentration, this appears not to be sufficient to trigger neuropeptide secretion. TRPV1, a calcium channel whose activation induces a sustained current - in contrary of ASICs - played in our experimental conditions a predominant role in neurosecretion. In the second part of my thesis, we focused on the role of ASICs in neuropathic pain. We used the spared nerve injury (SNI) model which consists in a nerve injury that induces symptoms of neuropathic pain such as mechanical allodynia. We have previously shown that the SNI model modifies ASIC currents in dissociated rat DRG neurons. We hypothesized that ASICs could play a role in the development of mechanical allodynia. The SNI model was performed on ASIC1a, -2, and -3 knock-out mice and wild type littermates. We measured mechanical allodynia on these mice with calibrated von Frey filaments. There were no differences between the wild-type and the ASIC1, or ASIC2 knockout mice. ASIC3 null mice were less sensitive than wild type mice at 21 day after SNI, indicating a role for ASIC3. Finally, to investigate other possible roles of ASICs in the perception of the environment, we measured the baseline heat responses. We used two different models; the tail flick model and the hot plate model. ASIC1a null mice showed increased thermal allodynia behaviour in the hot plate test at three different temperatures (49, 52, 55°C) compared to their wild type littermates. On the contrary, ASIC2 null mice showed reduced thermal allodynia behaviour in the hot plate test compared to their wild type littermates at the three same temperatures. We conclude that ASIC1a and ASIC2 in mice can play a role in temperature sensing. It is currently not understood how ASICs are involved in temperature sensing and what the reason for the opposed effects in the two knockout models is.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evaluation of radioactivity accidentally released into the atmosphere involves determining the radioactivity levels of rainwater samples. Rainwater scavenges atmospheric airborne radioactivity in such a way that surface contamination can be deduced from rainfall rate and rainwater radioactivity content. For this purpose, rainwater is usually collected in large surface collectors and then measured by gamma-spectrometry after such treatments as evaporation or iron hydroxide precipitation. We found that collectors can be adapted to accept large surface (diameter 47mm) cartridges containing a strongly acidic resin (Dowex AG 88) which is able to quantitatively extract radioactivity from rainwater, even during heavy rainfall. The resin can then be measured by gamma-spectrometry. The detection limit is 0.1Bq per sample of resin (80g) for (137)Cs. Natural (7)Be and (210)Pb can also be measured and the activity ratio of both radionuclides is comparable with those obtained through iron hydroxide precipitation and air filter measurements. Occasionally (22)Na has also been measured above the detection limit. A comparison between the evaporation method and the resin method demonstrated that 2/3 of (7)Be can be lost during the evaporation process. The resin method is simple and highly efficient at extracting radioactivity. Because of these great advantages, we anticipate it could replace former rainwater determination methods. Moreover, it does not necessitate the transportation of large rainwater volumes to the laboratory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epithelial Na+ channel (ENaC) belongs to a new class of channel proteins called the ENaC/DEG superfamily involved in epithelial Na+ transport, mechanotransduction, and neurotransmission. The role of ENaC in Na+ homeostasis and in the control of blood pressure has been demonstrated recently by the identification of mutations in ENaC beta and gamma subunits causing hypertension. The function of ENaC in Na+ reabsorption depends critically on its ability to discriminate between Na+ and other ions like K+ or Ca2+. ENaC is virtually impermeant to K+ ions, and the molecular basis for its high ionic selectivity is largely unknown. We have identified a conserved Ser residue in the second transmembrane domain of the ENaC alpha subunit (alphaS589), which when mutated allows larger ions such as K+, Rb+, Cs+, and divalent cations to pass through the channel. The relative ion permeability of each of the alphaS589 mutants is related inversely to the ionic radius of the permeant ion, indicating that alphaS589 mutations increase the molecular cutoff of the channel by modifying the pore geometry at the selectivity filter. Proper geometry of the pore is required to tightly accommodate Na+ and Li+ ions and to exclude larger cations. We provide evidence that ENaC discriminates between cations mainly on the basis of their size and the energy of dehydration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new lab-on-a-chip system for electrophysiological measurements on Xenopus oocytes. Xenopus oocytes are widely used host cells in the field of pharmacological studies and drug development. We developed a novel non-invasive technique using immobilized non-devitellinized cells that replaces the traditional "two-electrode voltage-clamp" (TEVC) method. In particular, rapid fluidic exchange was implemented on-chip to allow recording of fast kinetic events of exogenous ion channels expressed in the cell membrane. Reducing fluidic exchange times of extracellular reagent solutions is a great challenge with these large millimetre-sized cells. Fluidic switching is obtained by shifting the laminar flow interface in a perfusion channel under the cell by means of integrated poly-dimethylsiloxane (PDMS) microvalves. Reagent solution exchange times down to 20 ms have been achieved. An on-chip purging system allows to perform complex pharmacological protocols, making the system suitable for screening of ion channel ligand libraries. The performance of the integrated rapid fluidic exchange system was demonstrated by investigating the self-inhibition of human epithelial sodium channels (ENaC). Our results show that the response time of this ion channel to a specific reactant is about an order of magnitude faster than could be estimated with the traditional TEVC technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently discovered epithelial sodium channel (ENaC)/degenerin (DEG) gene family encodes sodium channels involved in various cell functions in metazoans. Subfamilies found in invertebrates or mammals are functionally distinct. The degenerins in Caenorhabditis elegans participate in mechanotransduction in neuronal cells, FaNaC in snails is a ligand-gated channel activated by neuropeptides, and the Drosophila subfamily is expressed in gonads and neurons. In mammals, ENaC mediates Na+ transport in epithelia and is essential for sodium homeostasis. The ASIC genes encode proton-gated cation channels in both the central and peripheral nervous system that could be involved in pain transduction. This review summarizes the physiological roles of the different channels belonging to this family, their biophysical and pharmacological characteristics, and the emerging knowledge of their molecular structure. Although functionally different, the ENaC/DEG family members share functional domains that are involved in the control of channel activity and in the formation of the pore. The functional heterogeneity among the members of the ENaC/DEG channel family provides a unique opportunity to address the molecular basis of basic channel functions such as activation by ligands, mechanotransduction, ionic selectivity, or block by pharmacological ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3D dose reconstruction is a verification of the delivered absorbed dose. Our aim was to describe and evaluate a 3D dose reconstruction method applied to phantoms in the context of narrow beams. A solid water phantom and a phantom containing a bone-equivalent material were irradiated on a 6 MV linac. The transmitted dose was measured by using one array of a 2D ion chamber detector. The dose reconstruction was obtained by an iterative algorithm. A phantom set-up error and organ interfraction motion were simulated to test the algorithm sensitivity. In all configurations convergence was obtained within three iterations. A local reconstructed dose agreement of at least 3% / 3mm with respect to the planned dose was obtained, except in a few points of the penumbra. The reconstructed primary fluences were consistent with the planned ones, which validates the whole reconstruction process. The results validate our method in a simple geometry and for narrow beams. The method is sensitive to a set-up error of a heterogeneous phantom and interfraction heterogeneous organ motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic emissions of metals from sources such as smelters are an international problem, but there is limited published information on emissions from Australian smelters. The objective of this study was to investigate the regional distribution of heavy metals in soils in the vicinity of the industrial complex of Port Kembla, NSW, Australia, which comprises a copper smelter, steelworks and associated industries. Soil samples (n=25) were collected at the depths of 0-5 and 5-20 cm, air dried and sieved to < 2 mm. Aqua regia extractable amounts of As, Cr, Cu, Ph and Zn were analysed by inductively coupled plasma mass spectrometry (lCP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). Outliers were identified from background levels by statistical methods. Mean background levels at a depth of 0-5 cm were estimated at 3.2 mg/kg As, 12 mg/kg Cr, 49 mg/kg Cu, 20 mg/kg Ph and 42 mg/kg Zn. Outliers for elevated As and Cu values were mainly present within 4 km from the Port Kembla industrial complex, but high Ph at two sites and high Zn concentrations were found at six sites up to 23 km from Port Kembla. Chromium concentrations were not anomalous close to the industrial complex. There was no significant difference of metal concentrations at depths of 0-5 and 5-20 cm, except for Ph and Zn. Copper and As concentrations in the soils are probably related to the concentrations in the parent rock. From this investigation, the extent of the contamination emanating from the Port Kembla industrial complex is limited to 1-13 km, but most likely <4 km, depending on the element; the contamination at the greater distance may not originate from the industrial complex. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate their toxicity in the developing brain, eight metal compounds, [bismuth sodium tartrate (BiNA-tartrate), CdCl(2), CoCl(2), HgCl(2), dimethyl mercury, NiCl(2), TlCl and triethyltin chloride (TET)] were tested in aggregating cell cultures of foetal rat telencephalon. The compounds were applied to the cultures continuously, either during an early developmental stage (between days 5 and 14) or during and advanced stage of maturation (between days 24 and 34). Changes in the activities of cell type-specific enzymes were used as a criterion for toxicity. A general cytotoxic effect was observed after treatment with either CdCl(2), HgCl(2) or TET at 10(-6)m, and with TlCl at 10(-5)m. Selective effects were found with BiNa-tartrate and dimethylmercury. CoCl(2) did not modify the parameters tested, whereas a stimulant effect was found with NiCl(2). The effects of several compounds were development dependent: HgCl(2), TET and TlCl were more toxic in immature cultures, whereas BiNa-tartrate, dimethylmercury and NiCl(2) were more effective in differentiated cultures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to the importance of sample preparation and extract separation, MS detection is a key factor in the sensitive quantification of large undigested peptides. In this article, a linear ion trap MS (LIT-MS) and a triple quadrupole MS (TQ-MS) have been compared in the detection of large peptides at subnanomolar concentrations. Natural brain natriuretic peptide, C-peptide, substance P and D-Junk-inhibitor peptide, a full D-amino acid therapeutic peptide, were chosen. They were detected by ESI and simultaneous MS(1) and MS(2) acquisitions. With direct peptide infusion, MS(2) spectra revealed that fragmentation was peptide dependent, milder on the LIT-MS and required high collision energies on the TQ-MS to obtain high-intensity product ions. Peptide adsorption on surfaces was overcome and peptide dilutions ranging from 0.1 to 25 nM were injected onto an ultra high-pressure LC system with a 1 mm id analytical column and coupled with the MS instruments. No difference was observed between the two instruments when recording in LC-MS(1) acquisitions. However, in LC-MS(2) acquisitions, a better sensitivity in the detection of large peptides was observed with the LIT-MS. Indeed, with the three longer peptides, the typical fragmentation in the TQ-MS resulted in a dramatic loss of sensitivity (> or = 10x).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that are members of the epithelial Na(+) channel/degenerin family and are transiently activated by extracellular acidification. ASICs in the central nervous system have a modulatory role in synaptic transmission and are involved in cell injury induced by acidosis. We have recently demonstrated that ASIC function is regulated by serine proteases. We provide here evidence that this regulation of ASIC function is tightly linked to channel cleavage. Trypsin cleaves ASIC1a with a similar time course as it changes ASIC1a function, whereas ASIC1b, whose function is not modified by trypsin, is not cleaved. Trypsin cleaves ASIC1a at Arg-145, in the N-terminal part of the extracellular loop, between a highly conserved sequence and a sequence that is critical for ASIC1a inhibition by the venom of the tarantula Psalmopoeus cambridgei. This channel domain controls the inactivation kinetics and co-determines the pH dependence of ASIC gating. It undergoes a conformational change during inactivation, which renders the cleavage site inaccessible to trypsin in inactivated channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bioenergetic status of cells is tightly regulated by the activity of cytosolic enzymes and mitochondrial ATP production. To adapt their metabolism to cellular energy needs, mitochondria have been shown to exhibit changes in their ionic composition as the result of changes in cytosolic ion concentrations. Individual mitochondria also exhibit spontaneous changes in their electrical potential without altering those of neighboring mitochondria. We recently reported that individual mitochondria of intact astrocytes exhibit spontaneous transient increases in their Na(+) concentration. Here, we investigated whether the concentration of other ionic species were involved during mitochondrial transients. By combining fluorescence imaging methods, we performed a multiparameter study of spontaneous mitochondrial transients in intact resting astrocytes. We show that mitochondria exhibit coincident changes in their Na(+) concentration, electrical potential, matrix pH and mitochondrial reactive oxygen species production during a mitochondrial transient without involving detectable changes in their Ca(2+) concentration. Using widefield and total internal reflection fluorescence imaging, we found evidence for localized transient decreases in the free Mg(2+) concentration accompanying mitochondrial Na(+) spikes that could indicate an associated local and transient enrichment in the ATP concentration. Therefore, we propose a sequential model for mitochondrial transients involving a localized ATP microdomain that triggers a Na(+)-mediated mitochondrial depolarization, transiently enhancing the activity of the mitochondrial respiratory chain. Our work provides a model describing ionic changes that could support a bidirectional cytosol-to-mitochondria ionic communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epithelial Na(+) channel (ENaC) and the acid-sensing ion channels (ASICs) form subfamilies within the ENaC/degenerin family of Na(+) channels. ENaC mediates transepithelial Na(+) transport, thereby contributing to Na(+) homeostasis and the maintenance of blood pressure and the airway surface liquid level. ASICs are H(+)-activated channels found in central and peripheral neurons, where their activation induces neuronal depolarization. ASICs are involved in pain sensation, the expression of fear, and neurodegeneration after ischemia, making them potentially interesting drug targets. This review summarizes the biophysical properties, cellular functions, and physiologic and pathologic roles of the ASIC and ENaC subfamilies. The analysis of the homologies between ENaC and ASICs and the relation between functional and structural information shows many parallels between these channels, suggesting that some mechanisms that control channel activity are shared between ASICs and ENaC. The available crystal structures and the discovery of animal toxins acting on ASICs provide a unique opportunity to address the molecular mechanisms of ENaC and ASIC function to identify novel strategies for the modulation of these channels by pharmacologic ligands.