157 resultados para Magnetic parameters
Resumo:
The geodynamic forces acting in the Earth's interior manifest themselves in a variety of ways. Volcanoes are amongst the most impressive examples in this respect, but like with an iceberg, they only represent the tip of a more extensive system hidden underground. This system consists of a source region where melt forms and accumulates, feeder connections in which magma is transported towards the surface, and different reservoirs where it is stored before it eventually erupts to form a volcano. A magma represents a mixture of melt and crystals. The latter can be extracted from the source region, or form anywhere along the path towards their final crystallization place. They will retain information of the overall plumbing system. The host rocks of an intrusion, in contrast, provide information at the emplacement level. They record the effects of thermal and mechanical forces imposed by the magma. For a better understanding of the system, both parts - magmatic and metamorphic petrology - have to be integrated. I will demonstrate in my thesis that information from both is complementary. It is an iterative process, using constraints from one field to better constrain the other. Reading the history of the host rocks is not always straightforward. This is shown in chapter two, where a model for the formation of clustered garnets observed in the contact aureole is proposed. Fragments of garnets, older than the intrusive rocks are overgrown by garnet crystallizing due to the reheating during emplacement of the adjacent pluton. The formation of the clusters is therefore not a single event as generally assumed but the result of a two-stage process, namely the alteration of the old grains and the overgrowth and amalgamation of new garnet rims. This makes an important difference when applying petrological methods such as thermobarometry, geochronology or grain size distributions. The thermal conditions in the aureole are a strong function of the emplacement style of the pluton. therefore it is necessary to understand the pluton before drawing conclusions about its aureole. A study investigating the intrusive rocks by means of field, geochemical, geochronologi- cal and structural methods is presented in chapter three. This provided important information about the assembly of the intrusion, but also new insights on the nature of large, homogeneous plutons and the structure of the plumbing system in general. The incremental nature of the emplacement of the Western Adamello tonalité is documented, and the existence of an intermediate reservoir beneath homogeneous plutons is proposed. In chapter four it is demonstrated that information extracted from the host rock provides further constraints on the emplacement process of the intrusion. The temperatures obtain by combining field observations with phase petrology modeling are used together with thermal models to constrain the magmatic activity in the immediate intrusion. Instead of using the thermal models to control the petrology result, the inverse is done. The model parameters were changed until a match with the aureole temperatures was obtained. It is shown, that only a few combinations give a positive match and that temperature estimates from the aureole can constrain the frequency of ancient magmatic systems. In the fifth chapter, the Anisotropy of Magnetic Susceptibility of intrusive rocks is compared to 3D tomography. The obtained signal is a function of the shape and distribution of ferromagnetic grains, and is often used to infer flow directions of magma. It turns out that the signal is dominated by the shape of the magnetic crystals, and where they form tight clusters, also by their distribution. This is in good agreement with the predictions made in the theoretical and experimental literature. In the sixth chapter arguments for partial melting of host rock carbonates are presented. While at first very surprising, this is to be expected when considering the prior results from the intrusive study and experiments from the literature. Partial melting is documented by compelling microstructures, geochemical and structural data. The necessary conditions are far from extreme and this process might be more frequent than previously thought. The carbonate melt is highly mobile and can move along grain boundaries, infiltrating other rocks and ultimately alter the existing mineral assemblage. Finally, a mineralogical curiosity is presented in chapter seven. The mineral assemblage magne§site and calcite is in apparent equilibrium. It is well known that these two carbonates are not stable together in the system Ca0-Mg0-Fe0-C02. Indeed, magnesite and calcite should react to dolomite during metamorphism. The presented explanation for this '"forbidden" assemblage is, that a calcite melt infiltrated the magnesite bearing rock along grain boundaries and caused the peculiar microstructure. This is supported by isotopie disequilibrium between calcite and magnesite. A further implication of partially molten carbonates is, that the host rock drastically looses its strength so that its physical properties may be comparable to the ones of the intrusive rocks. This contrasting behavior of the host rock may ease the emplacement of the intrusion. We see that the circle closes and the iterative process of better constraining the emplacement could start again. - La Terre est en perpétuel mouvement et les forces tectoniques associées à ces mouvements se manifestent sous différentes formes. Les volcans en sont l'un des exemples les plus impressionnants, mais comme les icebergs, les laves émises en surfaces ne représentent que la pointe d'un vaste système caché dans les profondeurs. Ce système est constitué d'une région source, région où la roche source fond et produit le magma ; ce magma peut s'accumuler dans cette région source ou être transporté à travers différents conduits dans des réservoirs où le magma est stocké. Ce magma peut cristalliser in situ et produire des roches plutoniques ou alors être émis en surface. Un magma représente un mélange entre un liquide et des cristaux. Ces cristaux peuvent être extraits de la source ou se former tout au long du chemin jusqu'à l'endroit final de cristallisation. L'étude de ces cristaux peut ainsi donner des informations sur l'ensemble du système magmatique. Au contraire, les roches encaissantes fournissent des informations sur le niveau d'emplacement de l'intrusion. En effet ces roches enregistrent les effets thermiques et mécaniques imposés par le magma. Pour une meilleure compréhension du système, les deux parties, magmatique et métamorphique, doivent être intégrées. Cette thèse a pour but de montrer que les informations issues de l'étude des roches magmatiques et des roches encaissantes sont complémentaires. C'est un processus itératif qui utilise les contraintes d'un domaine pour améliorer la compréhension de l'autre. Comprendre l'histoire des roches encaissantes n'est pas toujours aisé. Ceci est démontré dans le chapitre deux, où un modèle de formation des grenats observés sous forme d'agrégats dans l'auréole de contact est proposé. Des fragments de grenats plus vieux que les roches intru- sives montrent une zone de surcroissance générée par l'apport thermique produit par la mise en place du pluton adjacent. La formation des agrégats de grenats n'est donc pas le résultat d'un seul événement, comme on le décrit habituellement, mais d'un processus en deux phases, soit l'altération de vieux grains engendrant une fracturation de ces grenats, puis la formation de zone de surcroissance autour de ces différents fragments expliquant la texture en agrégats observée. Cette interprétation en deux phases est importante, car elle engendre des différences notables lorsque l'on applique des méthodes pétrologiques comme la thermobarométrie, la géochronologie ou encore lorsque l'on étudie la distribution relative de la taille des grains. Les conditions thermales dans l'auréole de contact dépendent fortement du mode d'emplacement de l'intrusion et c'est pourquoi il est nécessaire de d'abord comprendre le pluton avant de faire des conclusions sur son auréole de contact. Une étude de terrain des roches intrusives ainsi qu'une étude géochimique, géochronologique et structurale est présente dans le troisième chapitre. Cette étude apporte des informations importantes sur la formation de l'intrusion mais également de nouvelles connaissances sur la nature de grands plutons homogènes et la structure de système magmatique en général. L'emplacement incrémental est mis en évidence et l'existence d'un réservoir intermédiaire en-dessous des plutons homogènes est proposé. Le quatrième chapitre de cette thèse illustre comment utiliser l'information extraite des roches encaissantes pour expliquer la mise en place de l'intrusion. Les températures obtenues par la combinaison des observations de terrain et l'assemblage métamorphique sont utilisées avec des modèles thermiques pour contraindre l'activité magmatique au contact directe de cette auréole. Au lieu d'utiliser le modèle thermique pour vérifier le résultat pétrologique, une approche inverse a été choisie. Les paramètres du modèle ont été changés jusqu'à ce qu'on obtienne une correspondance avec les températures observées dans l'auréole de contact. Ceci montre qu'il y a peu de combinaison qui peuvent expliquer les températures et qu'on peut contraindre la fréquence de l'activité magmatique d'un ancien système magmatique de cette manière. Dans le cinquième chapitre, les processus contrôlant l'anisotropie de la susceptibilité magnétique des roches intrusives sont expliqués à l'aide d'images de la distribution des minéraux dans les roches obtenues par tomographie 3D. Le signal associé à l'anisotropie de la susceptibilité magnétique est une fonction de la forme et de la distribution des grains ferromagnétiques. Ce signal est fréquemment utilisé pour déterminer la direction de mouvement d'un magma. En accord avec d'autres études de la littérature, les résultats montrent que le signal est dominé par la forme des cristaux magnétiques, ainsi que par la distribution des agglomérats de ces minéraux dans la roche. Dans le sixième chapitre, une étude associée à la fusion partielle de carbonates dans les roches encaissantes est présentée. Si la présence de liquides carbonatés dans les auréoles de contact a été proposée sur la base d'expériences de laboratoire, notre étude démontre clairement leur existence dans la nature. La fusion partielle est documentée par des microstructures caractéristiques pour la présence de liquides ainsi que par des données géochimiques et structurales. Les conditions nécessaires sont loin d'être extrêmes et ce processus pourrait être plus fréquent qu'attendu. Les liquides carbonatés sont très mobiles et peuvent circuler le long des limites de grain avant d'infiltrer d'autres roches en produisant une modification de leurs assemblages minéralogiques. Finalement, une curiosité minéralogique est présentée dans le chapitre sept. L'assemblage de minéraux de magnésite et de calcite en équilibre apparent est observé. Il est bien connu que ces deux carbonates ne sont pas stables ensemble dans le système CaO-MgO-FeO-CO.,. En effet, la magnésite et la calcite devraient réagir et produire de la dolomite pendant le métamorphisme. L'explication présentée pour cet assemblage à priori « interdit » est que un liquide carbonaté provenant des roches adjacentes infiltre cette roche et est responsable pour cette microstructure. Une autre implication associée à la présence de carbonates fondus est que la roche encaissante montre une diminution drastique de sa résistance et que les propriétés physiques de cette roche deviennent comparables à celles de la roche intrusive. Cette modification des propriétés rhéologiques des roches encaissantes peut faciliter la mise en place des roches intrusives. Ces différentes études démontrent bien le processus itératif utilisé et l'intérêt d'étudier aussi bien les roches intrusives que les roches encaissantes pour la compréhension des mécanismes de mise en place des magmas au sein de la croûte terrestre.
Resumo:
PURPOSE: To evaluate the feasibility of visualizing the stent lumen using coronary magnetic resonance angiography in vitro. MATERIAL AND METHODS: Nineteen different coronary stents were implanted in plastic tubes with an inner diameter of 3 mm. The tubes were positioned in a plastic container filled with gel and included in a closed flow circuit (constant flow 18 cm/sec). The magnetic resonance images were obtained with a dual inversion fast spin-echo sequence. For intraluminal stent imaging, subtraction images were calculated from scans with and without flow. Subsequently, intraluminal signal properties were objectively assessed and compared. RESULTS: As a function of the stent type, various degrees of in-stent signal attenuation were observed. Tantalum stents demonstrated minimal intraluminal signal attenuation. For nitinol stents, the stent lumen could be identified, but the intraluminal signal was markedly reduced. Steel stents resulted in the most pronounced intraluminal signal voids. CONCLUSIONS: With the present technique, radiofrequency penetration into the stents is strongly influenced by the stent material. Thesefindings may have important implicationsforfuture stent design and stent imaging strategies.
Resumo:
Time-lapse crosshole ground-penetrating radar (GPR) data, collected while infiltration occurs, can provide valuable information regarding the hydraulic properties of the unsaturated zone. In particular, the stochastic inversion of such data provides estimates of parameter uncertainties, which are necessary for hydrological prediction and decision making. Here, we investigate the effect of different infiltration conditions on the stochastic inversion of time-lapse, zero-offset-profile, GPR data. Inversions are performed using a Bayesian Markov-chain-Monte-Carlo methodology. Our results clearly indicate that considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions
Resumo:
PURPOSE: This study investigated maximal cardiometabolic response while running in a lower body positive pressure treadmill (antigravity treadmill (AG)), which reduces body weight (BW) and impact. The AG is used in rehabilitation of injuries but could have potential for high-speed running, if workload is maximally elevated. METHODS: Fourteen trained (nine male) runners (age 27 ± 5 yr; 10-km personal best, 38.1 ± 1.1 min) completed a treadmill incremental test (CON) to measure aerobic capacity and heart rate (V˙O2max and HRmax). They completed four identical tests (48 h apart, randomized order) on the AG at BW of 100%, 95%, 90%, and 85% (AG100 to AG85). Stride length and rate were measured at peak velocities (Vpeak). RESULTS: V˙O2max (mL·kg·min) was similar across all conditions (men: CON = 66.6 (3.0), AG100 = 65.6 (3.8), AG95 = 65.0 (5.4), AG90 = 65.6 (4.5), and AG85 = 65.0 (4.8); women: CON = 63.0 (4.6), AG100 = 61.4 (4.3), AG95 = 60.7 (4.8), AG90 = 61.4 (3.3), and AG85 = 62.8 (3.9)). Similar results were found for HRmax, except for AG85 in men and AG100 and AG90 in women, which were lower than CON. Vpeak (km·h) in men was 19.7 (0.9) in CON, which was lower than every other condition: AG100 = 21.0 (1.9) (P < 0.05), AG95 = 21.4 (1.8) (P < 0.01), AG90 = 22.3 (2.1) (P < 0.01), and AG85 = 22.6 (1.6) (P < 0.001). In women, Vpeak (km·h) was similar between CON (17.8 (1.1) ) and AG100 (19.3 (1.0)) but higher at AG95 = 19.5 (0.4) (P < 0.05), AG90 = 19.5 (0.8) (P < 0.05), and AG85 = 21.2 (0.9) (P < 0.01). CONCLUSIONS: The AG can be used at maximal exercise intensities at BW of 85% to 95%, reaching faster running speeds than normally feasible. The AG could be used for overspeed running programs at the highest metabolic response levels.
Resumo:
Water movement in unsaturated soils gives rise to measurable electrical potential differences that are related to the flow direction and volumetric fluxes, as well as to the soil properties themselves. Laboratory and field data suggest that these so-called streaming potentials may be several orders of magnitudes larger than theoretical predictions that only consider the influence of the relative permeability and electrical conductivity on the self potential (SP) data. Recent work has improved predictions somewhat by considering how the volumetric excess charge in the pore space scales with the inverse of water saturation. We present a new theoretical approach that uses the flux-averaged excess charge, not the volumetric excess charge, to predict streaming potentials. We present relationships for how this effective excess charge varies with water saturation for typical soil properties using either the water retention or the relative permeability function. We find large differences between soil types and the predictions based on the relative permeability function display the best agreement with field data. The new relationships better explain laboratory data than previous work and allow us to predict the recorded magnitudes of the streaming potentials following a rainfall event in sandy loam, whereas previous models predict values that are three orders of magnitude too small. We suggest that the strong signals in unsaturated media can be used to gain information about fluxes (including very small ones related to film flow), but also to constrain the relative permeability function, the water retention curve, and the relative electrical conductivity function.
Resumo:
Although melanin is the most common pigment in animal integuments, the adaptive function of variation in melanin-based coloration remains poorly understood. The individual fitness returns associated with melanin pigments can be variable across species as these pigments can have physical and biological protective properties and genes involved in melanogenesis may vary in the intensity of pleiotropic effects. Moreover, dark and pale coloration can also enhance camouflage in alternative habitats and melanin-based coloration can be involved in social interactions. We investigated whether darker or paler individuals achieve a higher fitness in birds, a taxon wherein associations between melanin-based coloration and fitness parameters have been studied in a large number of species. A meta-analysis showed that the degree of melanin-based coloration was not significantly associated with laying date, clutch size, brood size, and survival across 26 species. Similar results were found when restricting the analyses to non-sexually dimorphic birds, colour polymorphic and monomorphic species, in passerines and non-passerines and in species for which inter-individual variation in melanism is due to colour intensity. However, eumelanic coloration was positively associated with clutch and brood size in sexually dimorphic species and those that vary in the size of black patches, respectively. Given that greater extent of melanin-based coloration was positively associated with reproductive parameters and survival in some species but negatively in other species, we conclude that in birds the sign and magnitude of selection exerted on melanin-based coloration is species- or trait-specific.
Resumo:
Coronary magnetic resonance angiography (MRA) is a technique aimed at establishing a noninvasive test for the assessment of significant coronary stenoses. There are certain boundary conditions that have hampered the clinical success of coronary MRA and coronary vessel wall imaging. Recent advances in hardware and software allow for consistent visualization of the proximal and mid portions of the native coronary arteries. Current research focuses on the use of intravascular MR contrast agents and black blood coronary angiography. One common goal is to create a noninvasive test which might allow for screening for major proximal and mid coronary artery disease. These novel approaches will represent a major step forward in diagnostic cardiology.
Resumo:
BACKGROUND: According to recent guidelines, patients with coronary artery disease (CAD) should undergo revascularization if significant myocardial ischemia is present. Both, cardiovascular magnetic resonance (CMR) and fractional flow reserve (FFR) allow for a reliable ischemia assessment and in combination with anatomical information provided by invasive coronary angiography (CXA), such a work-up sets the basis for a decision to revascularize or not. The cost-effectiveness ratio of these two strategies is compared. METHODS: Strategy 1) CMR to assess ischemia followed by CXA in ischemia-positive patients (CMR + CXA), Strategy 2) CXA followed by FFR in angiographically positive stenoses (CXA + FFR). The costs, evaluated from the third party payer perspective in Switzerland, Germany, the United Kingdom (UK), and the United States (US), included public prices of the different outpatient procedures and costs induced by procedural complications and by diagnostic errors. The effectiveness criterion was the correct identification of hemodynamically significant coronary lesion(s) (= significant CAD) complemented by full anatomical information. Test performances were derived from the published literature. Cost-effectiveness ratios for both strategies were compared for hypothetical cohorts with different pretest likelihood of significant CAD. RESULTS: CMR + CXA and CXA + FFR were equally cost-effective at a pretest likelihood of CAD of 62% in Switzerland, 65% in Germany, 83% in the UK, and 82% in the US with costs of CHF 5'794, euro 1'517, £ 2'680, and $ 2'179 per patient correctly diagnosed. Below these thresholds, CMR + CXA showed lower costs per patient correctly diagnosed than CXA + FFR. CONCLUSIONS: The CMR + CXA strategy is more cost-effective than CXA + FFR below a CAD prevalence of 62%, 65%, 83%, and 82% for the Swiss, the German, the UK, and the US health care systems, respectively. These findings may help to optimize resource utilization in the diagnosis of CAD.
Resumo:
This prospective study compares repetitive thick-slab single-shot projection magnetic resonance cholangiopancreatography (MRCP) with endoscopic ultrasonography (EUS) for the detection of choledocholithiasis. Fifty-seven consecutive patients (36 women, mean age 61) referred for suspected choledocholithiasis underwent MRCP, followed by EUS. Each procedure was performed by different operators blinded to the results of the other investigation. MR technique included a turbo spin-echo T2-weighted axial sequence with selective fat saturation (SPIR/TSE, TE=70 ms, TR=1,600 ms), followed by coronal dynamic MRCP. The same thick-slab slice was sequentially acquired 12 times as breath-hold single-shot projection imaging (SSh, TE=900 ms, TE=8,000 ms) centred on the common bile duct (CBD). Two experienced radiologists independently and blindly evaluated MR images for the detection of CBD stones. Their inter-observer agreement kappa was determined. Secondly, the two observers read MR images in consensus again. CBD stones were demonstrated in 18 out of 57 patients (31.6 %) and confirmed by endoscopic retrograde cholangiography (ERCP, n=17) or intraoperative cholangiography (n=1). Clinical follow-up served as the "gold standard" in patients with negative results without following invasive procedure (n=28). Sensitivity, specificity, accuracy, positive and negative predictive value for MRCP resulting from consensus reading were 94.9%, 94.4%, 94.7%, 97.4% and 89.5%, respectively. Corresponding values of EUS were 97.4%, 94.4%, 96.5%, 97.4% and 94.4%. Inter-observer agreement kappa was 0.81. Repetitive thick-slab single-shot projection MRCP is an accurate non-invasive imaging modality for suspected choledocholithiasis and should be increasingly used to select those patients who require a subsequent therapeutic procedure, namely ERCP.
Resumo:
PURPOSE: To assess the impact of axial traction during acquisition of direct magnetic resonance (MR) arthrography of the wrist with regard to joint space width and amount of contrast material between the opposing cartilage surfaces. MATERIALS AND METHODS: Fifteen consecutive patients (12 male, mean age 38.1 years) were included in this Institutional Review Board-approved prospective study. Three-compartment wrist MR arthrographies were performed between October and December 2009 on a 3 T unit using a fat-suppressed T1-weighted isotropic high-resolution volumetric interpolated breathhold examination (VIBE) sequence in the coronal plane, with and without axial traction (3 kg). Two radiologists measured radiocarpal (radioscaphoid, radiolunate) and midcarpal (lunocapitate, hamatolunate) joint space widths, with and without traction, and assessed the amount of contrast material between the opposing cartilage surfaces using a three-point scale: 0 = absence, 1 = partial, 2 = complete. RESULTS: With traction, joint space width increased significantly at the radioscaphoid (Delta = 0.78 mm, P < 0.01), radiolunate (Delta = 0.18 mm, P < 0.01), and lunocapitate (Delta = 0.45 mm, P < 0.01) spaces, and both observers detected significantly more contrast material between the cartilage surfaces. At the hamatolunate space, the differences in joint space width (Delta = 0.14 mm, P = 0.54) and amount of contrast material were not significant. CONCLUSION: Direct wrist MR arthrography with axial traction of 3 kg increases joint space width at the radiocarpal and lunocapitate spaces, and prompts better coverage of the articular cartilage by the contrast material. J. Magn. Reson. Imaging 2011;. (c) 2011 Wiley-Liss, Inc.
Resumo:
Image quality in magnetic resonance imaging (MRI) is considerably affected by motion. Therefore, motion is one of the most common sources of artifacts in contemporary cardiovascular MRI. Such artifacts in turn may easily lead to misinterpretations in the images and a subsequent loss in diagnostic quality. Hence, there is considerable research interest in strategies that help to overcome these limitations at minimal cost in time, spatial resolution, temporal resolution, and signal-to-noise ratio. This review summarizes and discusses the three principal sources of motion: the beating heart, the breathing lungs, and bulk patient movement. This is followed by a comprehensive overview of commonly used compensation strategies for these different types of motion. Finally, a summary and an outlook are provided.
Resumo:
ABSTRACT: BACKGROUND: Cardiovascular magnetic resonance (CMR) has favorable characteristics for diagnostic evaluation and risk stratification of patients with known or suspected CAD. CMR utilization in CAD detection is growing fast. However, data on its cost-effectiveness are scarce. The goal of this study is to compare the costs of two strategies for detection of significant coronary artery stenoses in patients with suspected coronary artery disease (CAD): 1) Performing CMR first to assess myocardial ischemia and/or infarct scar before referring positive patients (defined as presence of ischemia and/or infarct scar to coronary angiography (CXA) versus 2) a hypothetical CXA performed in all patients as a single test to detect CAD. METHODS: A subgroup of the European CMR pilot registry was used including 2,717 consecutive patients who underwent stress-CMR. From these patients, 21% were positive for CAD (ischemia and/or infarct scar), 73% negative, and 6% uncertain and underwent additional testing. The diagnostic costs were evaluated using invoicing costs of each test performed. Costs analysis was performed from a health care payer perspective in German, United Kingdom, Swiss, and United States health care settings. RESULTS: In the public sectors of the German, United Kingdom, and Swiss health care systems, cost savings from the CMR-driven strategy were 50%, 25% and 23%, respectively, versus outpatient CXA. If CXA was carried out as an inpatient procedure, cost savings were 46%, 50% and 48%, respectively. In the United States context, cost savings were 51% when compared with inpatient CXA, but higher for CMR by 8% versus outpatient CXA. CONCLUSION: This analysis suggests that from an economic perspective, the use of CMR should be encouraged as a management option for patients with suspected CAD.
Resumo:
The Krebs (or tricarboxylic acid (TCA)) cycle has a central role in the regulation of brain energy regulation and metabolism, yet brain TCA cycle intermediates have never been directly detected in vivo. This study reports the first direct in vivo observation of a TCA cycle intermediate in intact brain, namely, 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity. Our observation reveals important information about in vivo biochemical processes hitherto considered undetectable. In particular, it provides direct evidence that transport across the inner mitochondria membrane is rate limiting in the brain. The hyperpolarized magnetic resonance protocol designed for this study opens the way to direct and real-time studies of TCA cycle kinetics.