181 resultados para MULTIPLE SEX CHROMOSOMES


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sex determination is often seen as a dichotomous process: individual sex is assumed to be determined either by genetic (genotypic sex determination, GSD) or by environmental factors (environmental sex determination, ESD), most often temperature (temperature sex determination, TSD). We endorse an alternative view, which sees GSD and TSD as the ends of a continuum. Both effects interact a priori, because temperature can affect gene expression at any step along the sex-determination cascade. We propose to define sex-determination systems at the population- (rather than individual) level, via the proportion of variance in phenotypic sex stemming from genetic versus environmental factors, and we formalize this concept in a quantitative-genetics framework. Sex is seen as a threshold trait underlain by a liability factor, and reaction norms allow modeling interactions between genotypic and temperature effects (seen as the necessary consequences of thermodynamic constraints on the underlying physiological processes). As this formalization shows, temperature changes (due to e.g., climatic changes or range expansions) are expected to provoke turnovers in sex-determination mechanisms, by inducing large-scale sex reversal and thereby sex-ratio selection for alternative sex-determining genes. The frequency of turnovers and prevalence of homomorphic sex chromosomes in cold-blooded vertebrates might thus directly relate to the temperature dependence in sex-determination mechanisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In sharp contrast to birds and mammals, most cold-blooded vertebrates have homomorphic (morphologically undifferentiated) sex chromosomes. This might result either from recurrent X-Y recombination (occurring e.g. during occasional events of sex reversal) or from frequent turnovers (during which sex-determining genes are overthrown by new autosomal mutations). Evidence for turnovers is indeed mounting in fish, but very few have so far been documented in amphibians, possibly because of practical difficulties in identifying sex chromosomes. Female heterogamety (ZW) has long been established in Bufo bufo, based on sex reversal and crossing experiments. Here, we investigate a sex-linked marker identified from a laboratory cross between Palearctic green toads (Bufo viridis subgroup). The F(1) offspring produced by a female Bufo balearicus and a male Bufo siculus were phenotypically sexed, displaying an even sex ratio. A sex-specific marker detected in highly reproducible AFLP genotypes was cloned. Sequencing revealed a noncoding, microsatellite-containing fragment. Reamplification and genotyping of families of this and a reciprocal cross showed B. siculus to be male heterogametic (XY) and suggested the same system for B. balearicus. Our results thus reveal a cryptic heterogametic transition within bufonid frogs and help explain patterns of hybrid fitness within the B. viridis subgroup. Turnovers of genetic sex-determination systems may be more frequent in amphibians than previously thought and thus contribute to the prevalence of homomorphic sex chromosomes in this group.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Sex-determining systems often undergo high rates of turnover but for reasons that remain largely obscure. Two recent evolutionary models assign key roles, respectively, to sex-antagonistic (SA) mutations occurring on autosomes and to deleterious mutations accumulating on sex chromosomes. These two models capture essential but distinct key features of sex-chromosome evolution; accordingly, they make different predictions and present distinct limitations. Here we show that a combination of features from the two models has the potential to generate endless cycles of sex-chromosome transitions: SA alleles accruing on a chromosome after it has been co-opted for sex induce an arrest of recombination; the ensuing accumulation of deleterious mutations will soon make a new transition ineluctable. The dynamics generated by these interactions share several important features with empirical data, namely, (i) that patterns of heterogamety tend to be conserved during transitions and (ii) that autosomes are not recruited randomly, with some chromosome pairs more likely than others to be co-opted for sex.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RESUMELes modèles classiques sur l'évolution des chromosomes sexuels supposent que des gènes sexe- antagonistes s'accumulent sur les chromosomes sexuels, entraînant ainsi l'apparition d'une région non- recombinante, qui se répand progressivement en favorisant l'accumulation de mutations délétères. En accord avec cette théorie, les chromosomes sexuels que l'on observe aujourd'hui chez les mammifères et les oiseaux sont considérablement différenciés. En revanche, chez la plupart des vertébrés ectothermes, les chromosomes sexuels sont indifférenciés et il existe une impressionnante diversité de mécanismes de détermination du sexe. Au cours de cette thèse, j'ai étudié l'évolution des chromosomes sexuels chez les vertébrés ectothermes, en outre pour mieux comprendre ce contraste avec les vertébrés endothermes. L'hypothèse « high-turnover » postule que les chromosomes sexuels sont remplacés régulièrement à partir d'autosomes afin d'éviter leur dégénérescence. L'hypothèse « fountain-of-youth » propose que la recombinaison entre le chromosome X et le chromosome Y au sein de femelles XY empêche la dégénérescence. Les résultats de ma thèse, basés sur des études théoriques et empiriques, suggèrent que les deux processus peuvent être entraînés par l'environnement et ainsi jouent un rôle important dans l'évolution des chromosomes sexuels chez les vertébrés ectothermes.SUMMARYClassical models of sex-chromosome evolution assume that sexually antagonistic genes accumulate on sex chromosomes leading to a non-recombining region, which progressively expands and favors the accumulation of deleterious mutations. Concordant with this theory, sex chromosomes in extant mammals and birds are considerably differentiated. In most ectothermic vertebrates, such as frogs, however, sex chromosomes are undifferentiated and a striking diversity of sex determination systems is observed. This thesis was aimed to investigate this apparent contrast of sex chromosome evolution between endothermic and ectothermic vertebrates. The "high-turnover" hypothesis holds that sex chromosomes arose regularly from autosomes preventing decay. The "fountain-of-youth" hypothesis posits that sex chromosomes undergo episodic X-Y recombination in sex-reversed XY females, thereby purging ("rejuvenating") the Y chromosome. We suggest that both processes likely played an important role in sex chromosome evolution of ectothermic vertebrates. The literature largely views sex determination as a dichotomous process: individual sex is assumed to be determined either by genetic (genotypic sex determination, GSD) or by environmental factors (environmental sex determination, ESD), most often temperature (temperature sex determination, TSD). We endorsed an alternative view, which sees GSD and TSD as the ends of a continuum. The conservatism of molecular processes among different systems of sex determination strongly supports the continuum view. We proposed to define sex as a threshold trait underlain by a liability factor, and reaction norms allowing modeling interactions between genotypic and temperature effects. We showed that temperature changes (due to e.g., climatic changes or range expansions) are expected to provoke turnovers in sex-determination mechanisms maintaining homomorphic sex chromosomes. The balanced lethal system of crested newts might be the result of such a sex determination turnover, originating from two variants of ancient Y-chromosomes. Observations from a group of tree frogs, on the other hand, supported the 'fountain of youth' hypothesis. We then showed that low rates of sex- reversals in species with GSD might actually be adaptive considering joint effects of deleterious mutation purging and sexually antagonistic selection. Ongoing climatic changes are expected to threaten species with TSD by biasing population sex ratios. In contrast, species with GSD are implicitly assumed immune against such changes, because genetic systems are thought to necessarily produce even sex ratios. We showed that this assumption may be wrong and that sex-ratio biases by climatic changes may represent a previously unrecognized extinction threat for some GSD species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In sharp contrast with mammals and birds, many cold-blooded vertebrates present homomorphic sex chromosomes. Empirical evidence supports a role for frequent turnovers, which replace nonrecombining sex chromosomes before they have time to decay. Three main mechanisms have been proposed for such turnovers, relying either on neutral processes, sex-ratio selection, or intrinsic benefits of the new sex-determining genes (due, e.g., to linkage with sexually antagonistic mutations). Here, we suggest an additional mechanism, arising from the load of deleterious mutations that accumulate on nonrecombining sex chromosomes. In the absence of dosage compensation, this load should progressively lower survival rate in the heterogametic sex. Turnovers should occur when this cost outweighs the benefits gained from any sexually antagonistic genes carried by the nonrecombining sex chromosome. We use individual-based simulations of a Muller's ratchet process to test this prediction, and investigate how the relevant parameters (effective population size, strength and dominance of deleterious mutations, size of nonrecombining segment, and strength of sexually antagonistic selection) are expected to affect the rate of turnovers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Theory states that genes on the sex chromosomes have stronger effects on sexual dimorphism than genes on the autosomes. Although empirical data are not necessarily consistent with this theory, this situation may prevail because the relative role of sex-linked and autosomally inherited genes on sexual dimorphism has rarely been evaluated. We estimated the quantitative genetics of three sexually dimorphic melanin-based traits in the barn owl (Tyto alba), in which females are on average darker reddish pheomelanic and display more and larger black eumelanic feather spots than males. The plumage traits with higher sex-linked inheritance showed lower heritability and genetic correlations, but contrary to prediction, these traits showed less pronounced sexual dimorphism. Strong offspring sexual dimorphism primarily resulted from daughters not expressing malelike melanin-based traits and from sons expressing femalelike traits to similar degrees as their sisters. We conclude that in the barn owl, polymorphism at autosomal genes rather than at sex-linked genes generate variation in sexual dimorphism in melanin-based traits.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sexual reproduction is nearly universal in eukaryotes and genetic determination of sex prevails among animals. The astonishing diversity of sex-determining systems and sex chromosomes is yet bewildering. Some taxonomic groups possess conserved and dimorphic sex chromosomes, involving a functional copy (e.g. mammals' X, birds' Z) and a degenerated copy (mammals' Y, birds' W), implying that sex- chromosomes are expected to decay. In contrast, others like amphibians, reptiles and fishes yet maintained undifferentiated sex chromosomes. Why such different evolutionary trajectories? In this thesis, we empirically test and characterize the main hypotheses proposed to prevent the genetic decay of sex chromosomes, namely occasional X-Y recombination and frequent sex-chromosome transitions, using the Palearctic radiation of Hyla tree frogs as a model system. We take a phylogeographic and phylogenetic approach to relate sex-chromosome recombination, differentiation, and transitions in a spatial and temporal framework. By reconstructing the recent evolutionary history of the widespread European tree frog H. arborea, we showed that sex chromosomes can recombine in males, preventing their differentiation, a situation that potentially evolves rapidly. At the scale of the entire radiation, X-Y recombination combines with frequent transitions to prevent sex-chromosome degeneration in Hyla: we traced several turnovers of sex-determining system within the last 10My. These rapid changes seem less random than usually assumed: we gathered evidences that one chromosome pair is a sex expert, carrying genes with key role in animal sex determination, and which probably specialized through frequent reuse as a sex chromosome in Hyla and other amphibians. Finally, we took advantage of secondary contact zones between closely-related Hyla lineages to evaluate the consequences of sex chromosome homomorphy on the genetics of speciation. In comparison with other systems, the evolution of sex chromosomes in Hyla emphasized the existence of consistent evolutionary patterns within the chaotic diversity of flexibility of cold-blooded vertebrates' sex-determining systems, and provides insights into the evolution of recombination. Beyond sex-chromosome evolution, this work also significantly contributed to speciation, phylogeography and applied conservation research. -- La reproduction sexuée est quasi-universelle chez les eucaryotes et le sexe est le plus souvent déterminé génétiquement au sein du règne animal. L'incroyable diversité des systèmes de reproduction et des chromosomes sexuels est particulièrement étonnante. Certains groupes taxonomiques possèdent des chromosomes sexuels dimorphiques et très conservés, avec une copie entièrement fonctionnelle (ex : le X des mammifères, le Z des oiseaux) et une copie dégénérée (ex : le Y des mammifères, le W des oiseaux), suggérant que les chromosomes sexuels sont voués à se détériorer. Cependant les chromosomes sexuels d'autres groupes tels que les amphibiens, les reptiles et les poissons sont pour la plupart indifférenciés. Comment expliquer des trajectoires évolutives si différentes? Au cours de cette thèse, nous avons étudié empiriquement les processus évolutifs pouvant maintenir les chromosomes sexuels intacts, à savoir la recombinaison X-Y occasionnel ainsi que les substitutions fréquentes de chromosomes sexuels, en utilisant les rainettes Paléarctiques du genre Hyla comme modèle d'étude. Nous avons adopté une approche phylogéographique et phylogénétique pour appréhender les événements de recombinaison, de différenciation et de transitions de chromosomes sexuels dans un contexte spatio-temporel. En retraçant l'histoire évolutive récente de la rainette verte H. arborea, nous avons mis en évidence que les chromosomes sexuels pouvaient recombiner chez les mâles, empêchant ainsi leur différenciation, et que ce processus avait le potentiel d'évoluer très rapidement. A l'échelle plus globale de la radiation, il apparait que les phénomènes de recombinaison X-Y soient également accompagnés de substitutions de chromosomes sexuels, et participent de concert au maintien de chromosomes sexuels intacts dans les populations: le système de détermination du sexe des rainettes a changé plusieurs fois au cours des 10 derniers millions d'années. Ces transitions fréquentes ne semblent pas aléatoires: nous avons identifié une paire de chromosomes qui présente des caractéristiques présageant d'une spécialisation dans le déterminisme du sexe (notamment car elle possède des gènes importants pour cette fonction), et qui a été réutilisée plusieurs fois comme tel chez les rainettes ainsi que d'autres amphibiens. Enfin, nous avons étudié l'hybridation entre différentes espèces dans leurs zones de contact, afin d'évaluer si l'absence de différenciation entre X et Y jouaient un rôle dans les processus génétiques de spéciation. Outre son intérêt pour la compréhension de l'évolution des chromosomes sexuels, ce travail contribue de manière significative à d'autres domaines de recherche tels que la spéciation, la phylogéographie, ainsi que la biologie de la conservation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sex-chromosome differentiation was recently shown to vary among common frog populations in Fennoscandia, suggesting a trend of increased differentiation with latitude. By rearing families from two contrasted populations (respectively, from northern and southern Sweden), we show this disparity to stem from differences in sex-determination mechanisms rather than in XY-recombination patterns. Offspring from the northern population display equal sex ratios at metamorphosis, with phenotypic sexes that correlate strongly with paternal LG2 haplotypes (the sex chromosome); accordingly, Y haplotypes are markedly differentiated, with male-specific alleles and depressed diversity testifying to their smaller effective population size. In the southern population, by contrast, a majority of juveniles present ovaries at metamorphosis; only later in development do sex ratios return to equilibrium. Even at these later stages, phenotypic sexes correlate only mildly with paternal LG2 haplotypes; accordingly, there are no recognizable Y haplotypes. These distinct patterns of gonadal development fit the concept of 'sex races' proposed in the 1930s, with our two populations assigned to the 'differentiated' and 'semi-differentiated' races, respectively. Our results support the suggestion that 'sex races' differ in the genetic versus epigenetic components of sex determination. Analysing populations from the 'undifferentiated race' with high-density genetic maps should help to further test this hypothesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Complete sex chromosome dosage compensation has more often been observed in XY than ZW species. In this study, using a population genetic model and the chicken transcriptome, we assess whether sexual conflict can account for this difference. Sexual conflict over expression is inevitable when mutation effects are correlated across the sexes, as compensatory mutations in the heterogametic sex lead to hyperexpression in the homogametic sex. Coupled with stronger selection and greater reproductive variance in males, this results in slower and less complete evolution of Z compared with X dosage compensation. Using expression variance as a measure of selection strength, we find that, as predicted by the model, dosage compensation in the chicken is most pronounced in genes that are under strong selection biased towards females. Our study explains the pattern of weak dosage compensation in ZW systems, and suggests that sexual selection plays a major role in shaping sex chromosome dosage compensation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Contrasting with birds and mammals, poikilothermic vertebrates often have homomorphic sex chromosomes, possibly resulting from high rates of sex-chromosome turnovers and/or occasional X-Y recombination. Strong support for the latter mechanism was provided by four species of European tree frogs, which inherited from a common ancestor (∼5 Ma) the same pair of homomorphic sex chromosomes (linkage group 1, LG1), harboring the candidate sex-determining gene Dmrt1. Here, we test sex linkage of LG1 across six additional species of the Eurasian Hyla radiation with divergence times ranging from 6 to 40 Ma. LG1 turns out to be sex linked in six of nine resolved cases. Mapping the patterns of sex linkage to the Hyla phylogeny reveals several transitions in sex-determination systems within the last 10 My, including one switch in heterogamety. Phylogenetic trees of DNA sequences along LG1 are consistent with occasional X-Y recombination in all species where LG1 is sex linked. These patterns argue against one of the main potential causes for turnovers, namely the accumulation of deleterious mutations on nonrecombining chromosomes. Sibship analyses show that LG1 recombination is strongly reduced in males from most species investigated, including some in which it is autosomal. Intrinsically low male recombination might facilitate the evolution of male heterogamety, and the presence of important genes from the sex-determination cascade might predispose LG1 to become a sex chromosome.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sex chromosome differentiation in Rana temporaria varies strikingly among populations or families: whereas some males display well-differentiated Y haplotypes at microsatellite markers on linkage group 2 (LG2 ), others are genetically undistinguishable from females. We analysed with RADseq markers one family from a Swiss lowland population with no differentiated sex chromosomes, and where sibship analyses had failed to detect any association between the phenotypic sex of progeny and parental haplotypes. Offspring were reared in a common tank in outdoor conditions and sexed at the froglet stage. We could map a total of 2177 SNPs (1123 in the mother, 1054 in the father), recovering in both adults 13 linkage groups (= chromosome pairs) that were strongly syntenic to Xenopus tropicalis despite > 200 My divergence. Sexes differed strikingly in the localization of crossovers, which were uniformly distributed in the female but limited to chromosome ends in the male. None of the 2177 markers showed significant association with offspring sex. Considering the very high power of our analysis, we conclude that sex determination was not genetic in this family; which factors determined sex remain to be investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Identifying homology between sex chromosomes of different species is essential to understanding the evolution of sex determination. Here, we show that the identity of a homomorphic sex chromosome pair can be established using a linkage map, without information on offspring sex. By comparing sex-specific maps of the European tree frog Hyla arborea, we find that the sex chromosome (linkage group 1) shows a threefold difference in marker number between the male and female maps. In contrast, the number of markers on each autosome is similar between the two maps. We also find strongly conserved synteny between H. arborea and Xenopus tropicalis across 200 million years of evolution, suggesting that the rate of chromosomal rearrangement in anurans is low. Finally, we show that recombination in males is greatly reduced at the centers of large chromosomes, consistent with previous cytogenetic findings. Our research shows the importance of high-density linkage maps for studies of recombination, chromosomal rearrangement and the genetic architecture of ecologically or economically important traits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent studies have revealed that our sex chromosomes differentiated relatively recently from ancestral autosomes in the common ancestor of placental and marsupial mammals (therians). Here, we show that the therian X started to accumulate new retroduplicate genes with overall sex-biased expression upon therian sex chromosome differentiation. This process reached its peak within the first approximately 90 million years of sex chromosome evolution and then leveled off. Taken together, our observations suggest that the major sex-related functional remodeling of the X was completed relatively soon after the origination of therian sex chromosomes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: : Identification of children with elevated blood pressure (BP) is difficult because of the multiple sex, age, and height-specific thresholds to define elevated BP. We propose a simple set of absolute height-specific BP thresholds and evaluate their performance to identify children with elevated BP in two different populations. METHODS: : Using the 95th sex, age, and relative-height BP US thresholds to define elevated BP in children (standard criteria), we derived a set of (non sex- and non age-specific) absolute height-specific BP thresholds for 11 height categories by 10 cm increments. Using data from large school-based surveys conducted in Switzerland (N = 5207; 2621 boys, 2586 girls; age range: 10.1-14.9 years) and in the Seychelles (N = 25 759; 13 048 boys, 12 711 girls; age range: 4.4-18.8 years), we evaluated the performance of these height-specific thresholds to identify children with elevated BP. We also derived sex-specific absolute height-specific BP thresholds and compared their performance. RESULTS: : In the Swiss and the Seychelles surveys, the prevalence of elevated BP (standard criteria) was 11.4 and 9.1%, respectively. The height-specific thresholds to identify elevated BP had a sensitivity of 80 and 84%, a specificity of 99 and 99%, a positive predictive value of 92 and 91%, and a negative predictive value of 97 and 98%, respectively. Performance of sex-specific absolute height-specific BP thresholds was similar. CONCLUSION: : A simple table of height-specific BP thresholds allowed identifying children with elevated BP with high sensitivity and excellent specificity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recombination arrest between X and Y chromosomes, driven by sexually antagonistic genes, is expected to induce their progressive differentiation. However, in contrast to birds and mammals (which display the predicted pattern), most cold-blooded vertebrates have homomorphic sex chromosomes. Two main hypotheses have been proposed to account for this, namely high turnover rates of sex-determining systems and occasional XY recombination. Using individual-based simulations, we formalize the evolution of XY recombination (here mediated by sex reversal; the "fountain-of-youth" model) under the contrasting forces of sexually antagonistic selection and deleterious mutations. The shift between the domains of elimination and accumulation occurs at much lower selection coefficients for the Y than for the X. In the absence of dosage compensation, mildly deleterious mutations accumulating on the Y depress male fitness, thereby providing incentives for XY recombination. Under our settings, this occurs via "demasculinization" of the Y, allowing recombination in XY (sex-reversed) females. As we also show, this generates a conflict with the X, which coevolves to oppose sex reversal. The resulting rare events of XY sex reversal are enough to purge the Y from its load of deleterious mutations. Our results support the "fountain of youth" as a plausible mechanism to account for the maintenance of sex-chromosome homomorphy.