211 resultados para MECHANICAL FLOCCULATION UNIT
Resumo:
The mechanical behaviour of ectodermal cells in the area opaca and the supracellular organization of fibronectin in the adjacent extracellular matrix were studied in whole chick blastoderms developing in vitro. The pattern of spontaneous mechanical activity and its modification by immunoglobulins against fibronectin were determined using a real-time image-analysis system. The pattern of fibronectin was studied using immunocytochemical techniques. It was found that the ectodermal cells in the area opaca actively develop a radially oriented contraction, which leads to a distension of the area pellucida from which the embryo develops. Abnormally increased tension resulted in perturbations of gastrulation and neurulation. An optimized mechanical equilibrium within the blastoderm seems to be necessary for normal development. Anti-fibronectin antibodies applied to the basal side of the blastoderm led rapidly and reversibly to an increase of tension in the contracted cells. This observation indicates that modifications of the extracellular matrix can be transmitted to cytoskeletal elements within adjacent cells. The extracellular matrix of the area opaca contains fibronectin arranged in radially oriented fibrils. This orientation corresponds to the direction of migration of the mesodermal cells. Interestingly, the radial pattern of fibronectin is found in the regions where the ectodermal cells are contracted and develop radially oriented forces. This observation suggests that the supracellular assembly of the extracellular materials could be influenced by the mechanical activity of adjacent cells. Possible modulations of the supracellular organization of extracellular matrix by other factors, e.g. diffusible metabolites, is also discussed. The presence of characteristically organized extracellular matrix components, of spatially differentiated cell activities and of reciprocal interactions between them makes the young chick blastoderm an excellent system for physiological studies of the coordinated cellular activities that lead to changes in form, complexity and function.
Resumo:
Malnutrition is common in critically ill, hospitalized patients and so represents a major problem for intensive care. Nutritional support can be beneficial in such cases and may help preserve vital organ and immune function. Energy requirements, route of delivery and potential complications of nutritional support are discussed in this paper.
Resumo:
BACKGROUND: Half of the patients with end-stage heart failure suffer from persistent atrial fibrillation (AF). Atrial kick (AK) accounts for 10-15% of the ejection fraction. A device restoring AK should significantly improve cardiac output (CO) and possibly delay ventricular assist device (VAD) implantation. This study has been designed to assess the mechanical effects of a motorless pump on the right chambers of the heart in an animal model. METHODS: Atripump is a dome-shaped biometal actuator electrically driven by a pacemaker-like control unit. In eight sheep, the device was sutured onto the right atrium (RA). AF was simulated with rapid atrial pacing. RA ejection fraction (EF) was assessed with intracardiac ultrasound (ICUS) in baseline, AF and assisted-AF status. In two animals, the pump was left in place for 4 weeks and then explanted. Histology examination was carried out. The mean values for single measurement per animal with +/-SD were analysed. RESULTS: The contraction rate of the device was 60 per min. RA EF was 41% in baseline, 7% in AF and 21% in assisted-AF conditions. CO was 7+/-0.5 l min(-1) in baseline, 6.2+/-0.5 l min(-1) in AF and 6.7+/-0.5 l min(-1) in assisted-AF status (p<0.01). Histology of the atrium in the chronic group showed chronic tissue inflammation and no sign of tissue necrosis. CONCLUSIONS: The artificial muscle restores the AK and improves CO. In patients with end-stage cardiac failure and permanent AF, if implanted on both sides, it would improve CO and possibly delay or even avoid complex surgical treatment such as VAD implantation.
Resumo:
In this paper, a phenomenologically motivated magneto-mechanically coupled finite strain elastic framework for simulating the curing process of polymers in the presence of a magnetic load is proposed. This approach is in line with previous works by Hossain and co-workers on finite strain curing modelling framework for the purely mechanical polymer curing (Hossain et al., 2009b). The proposed thermodynamically consistent approach is independent of any particular free energy function that may be used for the fully-cured magneto-sensitive polymer modelling, i.e. any phenomenological or micromechanical-inspired free energy can be inserted into the main modelling framework. For the fabrication of magneto-sensitive polymers, micron-size ferromagnetic particles are mixed with the liquid matrix material in the uncured stage. The particles align in a preferred direction with the application of a magnetic field during the curing process. The polymer curing process is a complex (visco) elastic process that transforms a fluid to a solid with time. Such transformation process is modelled by an appropriate constitutive relation which takes into account the temporal evolution of the material parameters appearing in a particular energy function. For demonstration in this work, a frequently used energy function is chosen, i.e. the classical Mooney-Rivlin free energy enhanced by coupling terms. Several representative numerical examples are demonstrated that prove the capability of our approach to correctly capture common features in polymers undergoing curing processes in the presence of a magneto-mechanical coupled load.
Resumo:
Wounding in multicellular eukaryotes results in marked changes in gene expression that contribute to tissue defense and repair. Using a cDNA microarray technique, we analyzed the timing, dynamics, and regulation of the expression of 150 genes in mechanically wounded leaves of Arabidopsis. Temporal accumulation of a group of transcripts was correlated with the appearance of oxylipin signals of the jasmonate family. Analysis of the coronatine-insensitive coi1-1 Arabidopsis mutant that is also insensitive to jasmonate allowed us to identify a large number of COI1-dependent and COI1-independent wound-inducible genes. Water stress was found to contribute to the regulation of an unexpectedly large fraction of these genes. Comparing the results of mechanical wounding with damage by feeding larvae of the cabbage butterfly (Pieris rapae) resulted in very different transcript profiles. One gene was specifically induced by insect feeding but not by wounding; moreover, there was a relative lack of water stress-induced gene expression during insect feeding. These results help reveal a feeding strategy of P. rapae that may minimize the activation of a subset of water stress-inducible, defense-related genes.
Resumo:
Chronic growth hormone (GH) hypersecretion in rats leads to increased isometric force without affecting the unloaded shortening velocity of isolated cardiac papillary muscles, despite a marked isomyosin shift toward V3. To determine if alterations occurred at the level of the contractile proteins in rats bearing a GH-secreting tumor (GH rats), we examined the mechanical properties of skinned fibers to eliminate the early steps of the excitation-contraction coupling mechanism. We found that maximal active tension and stiffness at saturating calcium concentrations (pCa 4.5) were markedly higher in GH rats than in control rats (tension, 52.9 +/- 5.2 versus 38.1 +/- 4.6 mN.mm-2, p < 0.05; stiffness, 1,105 +/- 120 versus 685 +/- 88 mN.mm-2.microns-1, p < 0.01), whereas values at low calcium concentrations (pCa 9) were unchanged. In addition, the calcium sensitivity of the contractile proteins was slightly but significantly higher in GH rats than in control rats (delta pCa 0.04, p < 0.001). The crossbridge cycling rate, reflected by the response to quick length changes, was lower in GH rats than in control rats (62.0 +/- 2.6 versus 77.4 +/- 6.6 sec-1, p < 0.05), in good agreement with a decrease in the proportion of alpha-myosin heavy chains in the corresponding papillary muscles (45.5 +/- 2.0% versus 94.6 +/- 2.4%, p < 0.001). The changes in myosin heavy chain protein phenotype were paralleled by similar changes of the corresponding mRNAs, indicating that the latter occurred mainly at a pretranslational level. These results demonstrate that during chronic GH hypersecretion in rats, alterations at the myofibrillar level contribute to the increase in myocardial contractility observed in intact muscle.
Resumo:
Conventional U-Pb ages on zircon and monazite demonstrate that granites and gabbros intruded during a short time span of 5 Ma between 293 and 288 Ma in several polycyclic basement units of the Western Austroalpine domain. This bimodal activity reflects increasing underplating of an upwelling mantle at the base of a thinning post-Variscan continental crust.
Resumo:
The Atripump is a motorless, volume displacement pump based on artificial muscle technology that could reproduce the pump function of normal atrium. It could help prevent blood clots due to blood stagnation and eventually avoid anticoagulation therapy in atrial fibrillation (AF). An animal study has been designed to assess mechanical effects of this pump on fibrillating atrium. The Atripump is a dome shaped silicone coated nitinol actuator. A pacemaker like control unit drives the actuator. In five adult sheep, the right atrium (RA) was exposed and dome sutured onto the epicardium. Atrial fibrillation was induced using rapid epicardial pacing (600 beats/min). Ejection fraction of the RA was obtained with intracardiac ultrasound in baseline, AF and Atripump assisted AF conditions. The dome's contraction rate was 60/min with power supply of 12V, 400 mA for 200 ms and ran for 2 hours in total. Mean temperature on the RA was 39+/-1.5 degrees C. Right atrium ejection fraction was 31% in baseline conditions, 5% and 20% in AF and assisted AF, respectively. In two animals a thrombus appeared in the right appendix and washed out once the pump was turned on. The Atripump washes blood out the RA acting as an anticoagulant device. Possible clinical implications in patients with chronic AF are prevention of embolism of cardiac origin and avoidance of hemorrhagic complication due to chronic anticoagulation.
Resumo:
Mechanical load-induced intracellular signaling events are important for subsequent skeletal muscle hypertrophy. We previously showed that load-induced activation of the cation channel TRPV1 caused an increase in intracellular calcium concentrations ([Ca ( 2+) ]i) and that this activated mammalian target of rapamycin (mTOR) and promoted muscle hypertrophy. However, the link between mechanical load-induced intracellular signaling events, and the TRPV1-mediated increases in [Ca ( 2+) ]i are not fully understood. Here we show that administration of the TRPV1 agonist, capsaicin, induces phosphorylation of mTOR, p70S6K, S6, Erk1/2 and p38 MAPK, but not Akt, AMPK or GSK3β. Furthermore, the TRPV1-induced phosphorylation patterns resembled those induced by mechanical load. Our results continue to highlight the importance of TRPV1-mediated calcium signaling in load-induced intracellular signaling pathways.
Resumo:
ABSTRACT: BACKGROUND: The incidence of ventilator-associated pneumonia (VAP) within the first 48 hours of intensive care unit (ICU) stay has been poorly investigated. The objective was to estimate early-onset VAP occurrence in ICUs within 48 hours after admission. METHODS: We analyzed data from prospective surveillance between 01/01/2001 and 31/12/2009 in 11 ICUs of Lyon hospitals (France). The inclusion criteria were: first ICU admission, not hospitalized before admission, invasive mechanical ventilation during first ICU day, free of antibiotics at admission, and ICU stay >=48 hours. VAP was defined according to a national protocol. Its incidence was the number of events per 1,000 invasive mechanical ventilation-days. The Poisson regression model was fitted from day 2 (D2) to D8 to incident VAP to estimate the expected VAP incidence from D0 to D1 of ICU stay. RESULTS: Totally, 367 (10.8%) of 3,387 patients in 45,760 patient-days developed VAP within the first 9 days. The predicted cumulative VAP incidence at D0 and D1 was 5.3 (2.6-9.8) and 8.3 (6.1-11.1), respectively. The predicted cumulative VAP incidence was 23.0 (20.8-25.3) at D8. The proportion of missed VAP within 48 hours from admission was 11% (9%-17%). CONCLUSIONS: Our study indicates underestimation of early-onset VAP incidence in ICUs, if only VAP occurring [greater than or equal to]48 hours is considered to be hospital-acquired. Clinicians should be encouraged to develop a strategy for early detection after ICU admission.