240 resultados para Long non-coding RNA
Resumo:
In oviparous vertebrates vitellogenin, the precursor of the major yolk proteins, is synthesized in the liver of mature females under the control of estrogen. We have established the organization and primary structure of the 5' end region of the Xenopus laevis vitellogenin A2 gene and of the major chicken vitellogenin gene. The first three homologous exons have exactly the same length in both species, namely 53, 21 and 152 nucleotides, and present an overall sequence homology of 60%. In both species, the 5'-non-coding region of the vitellogenin mRNA measures only 13 nucleotides, nine of which are conserved. In contrast, the corresponding introns of the Xenopus and the chicken vitellogenin gene show no significant sequence homology. Within the 500 nucleotides preceding the 5' end of the genes, at least six blocks with sequence homologies of greater than 70% were detected. It remains to be demonstrated which of these conserved sequences, if any, are involved in the hormone-regulated expression of the vitellogenin genes.
Resumo:
Small non-coding RNAs act as critical regulators of gene expression and are essential for male germ cell development and spermatogenesis. Previously, we showed that germ cell-specific inactivation of Dicer1, an endonuclease essential for the biogenesis of micro-RNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), led to complete male infertility due to alterations in meiotic progression, increased spermatocyte apoptosis and defects in the maturation of spermatozoa. To dissect the distinct physiological roles of miRNAs and endo-siRNAs in spermatogenesis, we compared the testicular phenotype of mice with Dicer1 or Dgcr8 depletion in male germ cells. Dgcr8 mutant mice, which have a defective miRNA pathway while retaining an intact endo-siRNA pathway, were also infertile and displayed similar defects, although less severe, to Dicer1 mutant mice. These included cumulative defects in meiotic and haploid phases of spermatogenesis, resulting in oligo-, terato-, and azoospermia. In addition, we found by RNA sequencing of purified spermatocytes that inactivation of Dicer1 and the resulting absence of miRNAs affected the fine tuning of protein-coding gene expression by increasing low level gene expression. Overall, these results emphasize the essential role of miRNAs in the progression of spermatogenesis, but also indicate a role for endo-siRNAs in this process.
Resumo:
Diabetes mellitus is characterized by insulin secretion from pancreatic β cells that is insufficient to maintain blood glucose homeostasis. Autoimmune destruction of β cells results in type 1 diabetes mellitus, whereas conditions that reduce insulin sensitivity and negatively affect β-cell activities result in type 2 diabetes mellitus. Without proper management, patients with diabetes mellitus develop serious complications that reduce their quality of life and life expectancy. Biomarkers for early detection of the disease and identification of individuals at risk of developing complications would greatly improve the care of these patients. Small non-coding RNAs called microRNAs (miRNAs) control gene expression and participate in many physiopathological processes. Hundreds of miRNAs are actively or passively released in the circulation and can be used to evaluate health status and disease progression. Both type 1 diabetes mellitus and type 2 diabetes mellitus are associated with distinct modifications in the profile of miRNAs in the blood, which are sometimes detectable several years before the disease manifests. Moreover, circulating levels of certain miRNAs seem to be predictive of long-term complications. Technical and scientific obstacles still exist that need to be overcome, but circulating miRNAs might soon become part of the diagnostic arsenal to identify individuals at risk of developing diabetes mellitus and its devastating complications.
Mutational screening of splicing factor genes in cases with autosomal dominant retinitis pigmentosa.
Resumo:
PURPOSE: Mutations in genes encoding proteins from the tri-snRNP complex of the spliceosome account for more than 12% of cases of autosomal dominant retinitis pigmentosa (adRP). Although the exact mechanism by which splicing factor defects trigger photoreceptor death is not completely clear, their role in retinitis pigmentosa has been demonstrated by several genetic and functional studies. To test for possible novel associations between splicing factors and adRP, we screened four tri-snRNP splicing factor genes (EFTUD2, PRPF4, NHP2L1, and AAR2) as candidate disease genes. METHODS: We screened up to 303 patients with adRP from Europe and North America who did not carry known RP mutations. Exon-PCR and Sanger methods were used to sequence the NHP2L1 and AAR2 genes, while the sequences of EFTUD2 and PRPF4 were obtained by using long-range PCRs spanning coding and non-coding regions followed by next-generation sequencing. RESULTS: We detected novel missense changes in individual patients in the sequence of the genes PRPF4 and EFTUD2, but the role of these changes in relationship to disease could not be verified. In one other patient we identified a novel nucleotide substitution in the 5' untranslated region (UTR) of NHP2L1, which did not segregate with the disease in the family. CONCLUSIONS: The absence of clearly pathogenic mutations in the candidate genes screened in our cohort suggests that EFTUD2, PRPF4, NHP2L1, and AAR2 are either not involved in adRP or are associated with the disease in rare instances, at least as observed in this study in patients of European and North American origin.
Resumo:
The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters.
Resumo:
Huntington's disease is a rare neurodegenerative disease caused by a pathologic CAG expansion in the exon 1 of the huntingtin (HTT) gene. Aggregation and abnormal function of the mutant HTT (mHTT) cause motor, cognitive and psychiatric symptoms in patients, which lead to death in 15-20 years. Currently, there is no treatment for HD. Experimental approaches based on drug, cell or gene therapy are developed and reach progressively to the clinic. Among them, mHTT silencing using small non-coding nucleic acids display important physiopathological benefit in HD experimental models.
Resumo:
The fire ant Solenopsis invicta and its close relatives display an important social polymorphism involving differences in colony queen number. Colonies are headed by either a single reproductive queen (monogyne form) or multiple queens (polygyne form). This variation in social organization is associated with variation at the gene Gp-9, with monogyne colonies harboring only B-like allelic variants and polygyne colonies always containing b-like variants as well. We describe naturally occurring variation at Gp-9 in fire ants based on 185 full-length sequences, 136 of which were obtained from S. invicta collected over much of its native range. While there is little overall differentiation between most of the numerous alleles observed, a surprising amount is found in the coding regions of the gene, with such substitutions usually causing amino acid replacements. This elevated coding-region variation may result from a lack of negative selection acting to constrain amino acid replacements over much of the protein, different mutation rates or biases in coding and non-coding sequences, negative selection acting with greater strength on non-coding than coding regions, and/or positive selection acting on the protein. Formal selection analyses provide evidence that the latter force played an important role in the basal b-like lineages coincident with the emergence of polygyny. While our data set reveals considerable paraphyly and polyphyly of S. invicta sequences with respect to those of other fire ant species, the b-like alleles of the socially polymorphic species are monophyletic. An expanded analysis of colonies containing alleles of this clade confirmed the invariant link between their presence and expression of polygyny. Finally, our discovery of several unique alleles bearing various combinations of b-like and B-like codons allows us to conclude that no single b-like residue is completely predictive of polygyne behavior and, thus, potentially causally involved in its expression. Rather, all three typical b-like residues appear to be necessary.
Resumo:
Fine-tuning of insulin secretion from pancreatic beta-cells participates in blood glucose homeostasis. Defects in this process can lead to chronic hyperglycemia and diabetes mellitus. Several proteins controlling insulin exocytosis have been identified, but the mechanisms regulating their expression remain poorly understood. Here, we show that two non-coding microRNAs, miR124a and miR96, modulate the expression of proteins involved in insulin exocytosis and affect secretion of the beta-cell line MIN6B1. miR124a increases the levels of SNAP25, Rab3A and synapsin-1A and decreases those of Rab27A and Noc2. Inhibition of Rab27A expression is mediated by direct binding to the 3'-untranslated region of Rab27A mRNA. The effect on the other genes is indirect and linked to changes in mRNA levels. Over-expression of miR124a leads to exaggerated hormone release under basal conditions and a reduction in glucose-induced secretion. miR96 increases mRNA and protein levels of granuphilin, a negative modulator of insulin exocytosis, and decreases the expression of Noc2, resulting in lower capacity of MIN6B1 cells to respond to secretagogues. Our data identify miR124a and miR96 as novel regulators of the expression of proteins playing a critical role in insulin exocytosis and in the release of other hormones and neurotransmitters
Resumo:
BACKGROUND: The evolutionary lineage leading to the teleost fish underwent a whole genome duplication termed FSGD or 3R in addition to two prior genome duplications that took place earlier during vertebrate evolution (termed 1R and 2R). Resulting from the FSGD, additional copies of genes are present in fish, compared to tetrapods whose lineage did not experience the 3R genome duplication. Interestingly, we find that ParaHox genes do not differ in number in extant teleost fishes despite their additional genome duplication from the genomic situation in mammals, but they are distributed over twice as many paralogous regions in fish genomes. RESULTS: We determined the DNA sequence of the entire ParaHox C1 paralogon in the East African cichlid fish Astatotilapia burtoni, and compared it to orthologous regions in other vertebrate genomes as well as to the paralogous vertebrate ParaHox D paralogons. Evolutionary relationships among genes from these four chromosomal regions were studied with several phylogenetic algorithms. We provide evidence that the genes of the ParaHox C paralogous cluster are duplicated in teleosts, just as it had been shown previously for the D paralogon genes. Overall, however, synteny and cluster integrity seems to be less conserved in ParaHox gene clusters than in Hox gene clusters. Comparative analyses of non-coding sequences uncovered conserved, possibly co-regulatory elements, which are likely to contain promoter motives of the genes belonging to the ParaHox paralogons. CONCLUSION: There seems to be strong stabilizing selection for gene order as well as gene orientation in the ParaHox C paralogon, since with a few exceptions, only the lengths of the introns and intergenic regions differ between the distantly related species examined. The high degree of evolutionary conservation of this gene cluster's architecture in particular - but possibly clusters of genes more generally - might be linked to the presence of promoter, enhancer or inhibitor motifs that serve to regulate more than just one gene. Therefore, deletions, inversions or relocations of individual genes could destroy the regulation of the clustered genes in this region. The existence of such a regulation network might explain the evolutionary conservation of gene order and orientation over the course of hundreds of millions of years of vertebrate evolution. Another possible explanation for the highly conserved gene order might be the existence of a regulator not located immediately next to its corresponding gene but further away since a relocation or inversion would possibly interrupt this interaction. Different ParaHox clusters were found to have experienced differential gene loss in teleosts. Yet the complete set of these homeobox genes was maintained, albeit distributed over almost twice the number of chromosomes. Selection due to dosage effects and/or stoichiometric disturbance might act more strongly to maintain a modal number of homeobox genes (and possibly transcription factors more generally) per genome, yet permit the accumulation of other (non regulatory) genes associated with these homeobox gene clusters.
Resumo:
Purpose: Previously we reported on a premature termination mutation in SLC16A12 that leads to dominant juvenile cataract and renal glucosuria. To assess the mutation rate and genotype-phenotype correlations of SLC16A12 in juvenile or age-related forms of cataract, we performed a mutation screen in cataract patients. Methods: Clinical data of approximately 660 patients were collected, genomic DNA was isolated and analyzed. Exons 3 to 8 including flanking intron sequences of SLC16A12 were PCR amplified and DNA sequence was determined. Selected mutations were tested by cell culture assays, in silico analysis and RT-PCR. Results: We found sequence alterations at a rate of approximately 1/75 patients. None of them was found in 360 control alleles. Alterations affect splice site and regulatory region but most mutations caused an amino acid substitution. The majority of the coding region mutations maps to trans-membrane domains. One mutation located to the 5'UTR. It affects translational efficiency of SLC16A12. In addition, we identified a cataract-predisposing SNP in the non-coding region that causes allele-specific splicing of the 5'UTR region. Conclusions: Altered translational efficiency of the solute carrier SLC16A12 and its allele-specific splicing strongly support a model of challenged homeostasis to cause various forms of cataract. In addition, the pathogenic property of the here reported sequence alterations is supported by the lack of known sequence variations within the coding region of SLC16A12. Due to the relatively high mutation rate, we suggest to include SLC16A12 in diagnostic cataract screening. Generally, our data recommend the assessment of regulatory sequences for diagnostic purposes.
Resumo:
MicroRNAs (miRNAs) are small non-coding RNAs that regulate various biological processes. Cell-free miRNAs measured in blood plasma have emerged as specific and sensitive markers of physiological processes and disease. In this study, we investigated whether circulating miRNAs can serve as biomarkers for the detection of autologous blood transfusion, a major doping technique that is still undetectable. Plasma miRNA levels were analyzed using high-throughput quantitative real-time PCR. Plasma samples were obtained before and at several time points after autologous blood transfusion (blood bag storage time 42 days) in 10 healthy subjects and 10 controls without transfusion. Other serum markers of erythropoiesis were determined in the same samples. Our results revealed a distinct change in the pattern of circulating miRNAs. Ten miRNAs were upregulated in transfusion samples compared with control samples. Among these, miR-30b, miR-30c, and miR-26b increased significantly and showed a 3.9-, 4.0-, and 3.0-fold change, respectively. The origin of these miRNAs was related to pulmonary and liver tissues. Erythropoietin (EPO) concentration decreased after blood reinfusion. A combination of miRNAs and EPO measurement in a mathematical model enhanced the efficiency of autologous transfusion detection through miRNA analysis. Therefore, our results lay the foundation for the development of miRNAs as novel blood-based biomarkers to detect autologous transfusion.
Resumo:
Background: Spermatogenesis is a complex biological process that requires a highly specialized control of gene expression. In the past decade, small non-coding RNAs have emerged as critical regulators of gene expression both at the transcriptional and post-transcriptional level. DICER1, an RNAse III endonuclease, is essential for the biogenesis of several classes of small RNAs, including microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), but is also critical for the degradation of toxic transposable elements. In this study, we investigated to which extent DICER1 is required for germ cell development and the progress of spermatogenesis in mice.Principal Findings: We show that the selective ablation of Dicer1 at the early onset of male germ cell development leads to infertility, due to multiple cumulative defects at the meiotic and post-meiotic stages culminating with the absence of functional spermatozoa. Alterations were observed in the first spermatogenic wave and include delayed progression of spermatocytes to prophase I and increased apoptosis, resulting in a reduced number of round spermatids. The transition from round to mature spermatozoa was also severely affected, since the few spermatozoa formed in mutant animals were immobile and misshapen, exhibiting morphological defects of the head and flagellum. We also found evidence that the expression of transposable elements of the SINE family is up-regulated in Dicer1-depleted spermatocytes.Conclusions/Significance: Our findings indicate that DICER1 is dispensable for spermatogonial stem cell renewal and mitotic proliferation, but is required for germ cell differentiation through the meiotic and haploid phases of spermatogenesis.
Resumo:
MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. Cell-free miRNAs detected in blood plasma are used as specific and sensitive markers of physiological processes and some diseases. Circulating miRNAs are highly stable in body fluids, for example plasma. Therefore, profiles of circulating miRNAs have been investigated for potential use as novel, non-invasive anti-doping biomarkers. This review describes the biological mechanisms underlying the variation of circulating miRNAs, revealing that they have great potential as a new class of biomarker for detection of doping substances. The latest developments in extraction and profiling technology, and the technical design of experiments useful for anti-doping, are also discussed. Longitudinal measurements of circulating miRNAs in the context of the athlete biological passport are proposed as an efficient strategy for the use of these new markers. The review also emphasizes potential challenges for the translation of circulating miRNAs from research into practical anti-doping applications.
Resumo:
Résumé Durant le développement embryonnaire, les cellules pigmentaires des mammifères se développent à partir de deux origines différentes : les melanocytes se développent à partir de la crête neurale alors que les cellules de la rétine pigmentaire (RP) ont une origine neuronale. Un grand nombre de gènes sont impliqués dans la pigmentation dont les gènes de la famille tyrosinase à savoir Tyr, Tyrp1 et Dct. Certaines études ont suggéré que les gènes de la pigmentation sont régulés de manière différentielle dans les mélanocytes et dans la RP. Dans ce travail, les gènes de la famille tyrosinase ont été étudiés comme modèle de la régulation des gènes de la pigmentation par des éléments régulateurs agissant à distance. II a été montré que le promoteur du gène Tyrp1pouvait induire l'expression d'un transgène uniquement dans la RP alors que ce gène est aussi exprimé dans les mélanocytes comme le montre le phénotype des souris mutantes pour Tyrp1. Ce résultat suggère que les éléments régulateurs du promoteur sont suffisants pour l'expression dans la RP mais pas pour l'expression dans les mélanocytes. J'ai donc cherché à identifier la séquence qui régule l'expression dans les mélanocytes. Un chromosome artificiel bactérien (CAB) contenant le gène Tyrp1 s'est avéré suffisant pour induire l'expression dans les mélanocytes, comme démontré par la correction du phénotype mutant. La séquence de ce CAB contient plusieurs régions très conservées qui pourraient représenter de nouveaux éléments régulateurs. Par la suite, j'ai focalisé mon analyse sur une séquence située à -I5 kb qui s'est révélée être un amplificateur spécifique aux mélanocytes comme démontré par des expériences de cultures cellulaire et de transgenèse. De plus, une analyse poussée de cet élément a révélé que le facteur de transcription Sox 10 représentait un transactivateur de cet amplificateur. Comme pour Tyrp1, la régulation du gène tyrosinase est contrôlée par différents éléments régulateurs dans les mélanocytes et la RP. Il a été montré que le promoteur de tyrosinase n'était pas suffisant pour une forte expression dans les mélanocytes et la RP. De plus, l'analyse de la région située en amont a révélé la présence d'un amplificateur nécessaire à l'expression dans les mélanocytes à la position -15 kb. Cet amplificateur n'est toutefois pas actif dans la RP mais agit comme un répresseur dans ces cellules. Ces résultats indiquent que certains éléments nécessaires à l'expression dans les deux types de cellules pigmentaires sont absents de ces constructions. Comme pour Tyrp1, j'ai en premier lieu démontré qu'un CAB était capable de corriger le phénotype albinique, puis ai inséré un gène reporter (lacZ) dans le CAB par recombinaison homologue et ai finalement analysé l'expression du reporter en transgenèse. Ces souris ont montré une expression forte du lacZ dans les mélanocytes et la RP, ce qui indique que le CAB contient les séquences régulatrices nécessaires à l'expression correcte de tyrosinase. Afin de localiser plus précisément les éléments régulateurs, j'ai ensuite généré des délétions dans le CAB et analysé l'expression du lacZ en transgenèse. La comparaison de séquences génomiques provenant de différentes espèces a permis par la suite d'identifier des régions représentant de nouveaux éléments régulateurs potentiels. En utilisant cette approche, j'ai identifié une région qui se comporte comme un amplificateur dans la RP et qui est nécessaire à l'expression de tyrosinase dans ce tissu. De plus, j'ai identifié les facteurs de transcription Mitf et Sox10 comme transactivateurs de l'amplificateur spécifique aux mélanocytes situé à -15 kb. L'identification et la caractérisation des ces éléments régulateurs des gènes tyrosinase et Tyrp1confirme donc que la régulation différentielle des gènes dans les mélanocytes et la RP est liée à des éléments régulateurs séparés. Summary Pigment cells of mammals originate from two different lineages: melanocytes arise from the neural crest, whereas cells of the retinal pigment epithelium (RPE) originate from the optic cup of the developing forebrain. A large set of genes are involved in pigmentation, including the members of the tyrosinase gene family, namely tyrosinase, Tyrp1 and Dct. Previous studies have suggested that pigmentation genes are differentially regulated in melanocytes and RPE. In this work, the tyrosinase gene family was used as a model for studying the involvement of distal regulatory elements in pigment cell-specific gene expression. The promoter of the Tyrp1 gene has been shown to drive detectable transgene expression only to the RPE, even though the gene is also expressed in melanocytes as evident from Tyrp1-mutant mice. This indicates that the regulatory elements responsible for Tyrp1 gene expression in the RPE are not sufficient for expression in melanocytes. I thus searched for a putative melanocyte-specific regulatory sequence and demonstrate that a bacterial artificial chromosome (BAC) containing the Tyrp1 gene and surrounding sequences is able to target transgenic expression to melanocytes and to rescue the Tyrp1 b (brown) phenotype. This BAC contains several highly conserved non-coding sequences that might represent novel regulatory elements. I further focused on a sequence located at -15 kb which I identified as amelanocyte-specific enhancer as shown by cell culture and transgenic mice. In addition, further functional analysis identified the transcription factor Sox10 as being able to bind and transactivate this enhancer. As for Tyrp1, tyrosinase gene regulation is mediated by different cis-regulatory elements in melanocytes and RPE. It was shown that the tyrosinase promoter was not sufficient to confer strong and specific expression in melanocytes and RPE. Moreover, analysis of tyrosinase upstream sequence, revealed the presence of a specific enhancer at position -15 kb which was necessary to confer strong expression in melanocytes. This enhancer element however failed to act as an enhancer in the RPE, but rather repressed expression. This indicates that some regulatory elements required for tyrosinase expression in both RPE and melanocytes are still missing from these constructs. As for Tyrp1, I first demonstrated that a BAC containing the Tyr gene is able to rescue the Tyr c (albino) phenotype in mice, then I inserted a lacZ reporter gene in the BAC by homologous recombination, and finally analysed the pattern of lacZ expression in transgenic mice. These mice showed strong lacZ expression in both RPE and melanocytes, indicating that the BAC contains the regulatory sequences required for proper tyrosinase expression. In order to localize more precisely these regulatory elements, I have then generated several deletions in the BAC and analysed lacZ expression in transgenic mice. Multi-species comparative genomic analysis then allowed identifying conserved sequences that potentially represent novel regulatory elements. Using this experimental approach, I identified a region that behaves as a RPE-specific enhancer and that is required for tyrosinase expression in the retina] pigment epithelium. In addition, I identified the transcription factors Mitf and Sox l0 as being transactivators of the melanocyte-specific enhancer located at -l5 kb. The identification and characterization of these tyrosinase and Tyrp1 distal regulatory element supports the idea that separate regulatory sequences mediate differential gene expression in melanocytes and RPE.
Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells.
Resumo:
BACKGROUND: Diabetes mellitus is a common metabolic disorder characterized by dysfunction of insulin-secreting pancreatic beta-cells. MicroRNAs are important regulators of beta-cell activities. These non-coding RNAs have recently been discovered to exert their effects not only inside the cell producing them but, upon exosome-mediated transfer, also in other recipient cells. This novel communication mode remains unexplored in pancreatic beta-cells. In the present study, the microRNA content of exosomes released by beta-cells in physiological and physiopathological conditions was analyzed and the biological impact of their transfer to recipient cells investigated. RESULTS: Exosomes were isolated from the culture media of MIN6B1 and INS-1 derived 832/13 beta-cell lines and from mice, rat or human islets. Global profiling revealed that the microRNAs released in MIN6B1 exosomes do not simply reflect the content of the cells of origin. Indeed, while a subset of microRNAs was preferentially released in exosomes others were selectively retained in the cells. Moreover, exposure of MIN6B1 cells to inflammatory cytokines changed the release of several microRNAs. The dynamics of microRNA secretion and their potential transfer to recipient cells were next investigated. As a proof-of-concept, we demonstrate that if cel-miR-238, a C. Elegans microRNA not present in mammalian cells, is expressed in MIN6B1 cells a fraction of it is released in exosomes and is transferred to recipient beta-cells. Furthermore, incubation of untreated MIN6B1 or mice islet cells in the presence of microRNA-containing exosomes isolated from the culture media of cytokine-treated MIN6B1 cells triggers apoptosis of recipient cells. In contrast, exosomes originating from cells not exposed to cytokines have no impact on cell survival. Apoptosis induced by exosomes produced by cytokine-treated cells was prevented by down-regulation of the microRNA-mediating silencing protein Ago2 in recipient cells, suggesting that the effect is mediated by the non-coding RNAs. CONCLUSIONS: Taken together, our results suggest that beta-cells secrete microRNAs that can be transferred to neighboring beta-cells. Exposure of donor cells to pathophysiological conditions commonly associated with diabetes modifies the release of microRNAs and affects survival of recipient beta-cells. Our results support the concept that exosomal microRNAs transfer constitutes a novel cell-to-cell communication mechanism regulating the activity of pancreatic beta-cells.