117 resultados para Locaton of defects
Resumo:
BACKGROUND: Chest wall resection and reconstruction can be performed with minimal mortality and excellent functional and cosmetic results using synthetic meshes, methylmethacrylate, or other substitutes. However, these techniques are less easily applicable if chest wall resections have to be performed for infections. METHODS: We report a novel technique for this purpose using a modified latissimus dorsi flap harvested in continuity with the thoracolumbar fascia. The vascularized fascia was sutured into the chest wall defect, providing a stable base for the muscular component of the flap. Three patients requiring large full-thickness resections of the anterolateral chest wall for chronic infections were treated accordingly, two presenting with chronic radionecrosis and osteomyelitis and one with chest wall invasion by pulmonary aspergillosis. RESULTS: There were no intraoperative or postoperative complications and immediate extubation was possible in all 3 patients without the need for postoperative ventilation or tracheotomy. Healing of the infected chest wall was observed in all 3 patients. Postoperative cinemagnetic resonance imaging revealed concordant movements of the replaced segments without evidence of paradoxical motion during inspiration and expiration. CONCLUSIONS: This technique is easy and safe. It allows a stable and satisfactory reconstruction after large anterolateral full-thickness chest wall resections of infected, previously irradiated tissues, using only well-vascularized autologous tissue.
Resumo:
Rationale: The purpose of this article is to demonstrate the use of homologous culture cells in treating an advanced coccon formation of the hand and three extended squamous cell carcinomas of the lower and upper limb in a patient with recessive dystrophic epidermolysis bullosa. The preparation and application of these cells in the operation room are being described. Methods: A number of surgical approaches have been described to correct these deformities in order to improve function.We propose a new therapeutic approach of treating loss of motion and independent digital function as well as coverage of large skin defects in a patient with recessive dystrophic epidermolysis bullosa by using autologous culture cells. Surgical treatment of these patients is really difficult because of the existing skin fragility. Furthermore, surgical wounds do not easily heal because of recurrent blisters and erosions as well as due to the patients' poor nutricial status. Results: We report our experience of mutiple extended cutaneous squamous cell carcinomas arising in our patient which were successfully managed using autologous composite cultured skin grafts. The cocoon hand deformity was also treated with the limb becoming functional. Conclusion: The use of autologous keratinocytes and fibroblasts in epidermolysis bullosa is hereby outlined for the fist time.
Resumo:
OBJECTIVE: To 'map' the current (2004) state of prenatal screening in Europe. DESIGN: (i) Survey of country policies and (ii) analysis of data from EUROCAT (European Surveillance of Congenital Anomalies) population-based congenital anomaly registers. SETTING: Europe. POPULATION: Survey of prenatal screening policies in 18 countries and 1.13 million births in 12 countries in 2002-04. METHODS: (i) Questionnaire on national screening policies and termination of pregnancy for fetal anomaly (TOPFA) laws in 2004. (ii) Analysis of data on prenatal detection and termination for Down's syndrome and neural tube defects (NTDs) using the EUROCAT database. MAIN OUTCOME MEASURES: Existence of national prenatal screening policies, legal gestation limit for TOPFA, prenatal detection and termination rates for Down's syndrome and NTD. RESULTS: Ten of the 18 countries had a national country-wide policy for Down's syndrome screening and 14/18 for structural anomaly scanning. Sixty-eight percent of Down's syndrome cases (range 0-95%) were detected prenatally, of which 88% resulted in termination of pregnancy. Eighty-eight percent (range 25-94%) of cases of NTD were prenatally detected, of which 88% resulted in termination. Countries with a first-trimester screening policy had the highest proportion of prenatally diagnosed Down's syndrome cases. Countries with no official national Down's syndrome screening or structural anomaly scan policy had the lowest proportion of prenatally diagnosed Down's syndrome and NTD cases. Six of the 18 countries had a legal gestational age limit for TOPFA, and in two countries, termination of pregnancy was illegal at any gestation. CONCLUSIONS: There are large differences in screening policies between countries in Europe. These, as well as organisational and cultural factors, are associated with wide country variation in prenatal detection rates for Down's syndrome and NTD.
Resumo:
The phosphoinositide 3-kinase (PI3K) family has multiple vascular functions, but the specific regulatory isoform supporting lymphangiogenesis remains unidentified. Here, we report that deletion of the Pik3r1 gene, encoding the regulatory subunits p85alpha, p55alpha, and p50alpha impairs lymphatic sprouting and maturation, and causes abnormal lymphatic morphology, without major impact on blood vessels. Pik3r1 deletion had the most severe consequences among gut and diaphragm lymphatics, which share the retroperitoneal anlage, initially suggesting that the Pik3r1 role in this vasculature is anlage-dependent. However, whereas lymphatic sprouting toward the diaphragm was arrested, lymphatics invaded the gut, where remodeling and valve formation were impaired. Thus, cell-origin fails to explain the phenotype. Only the gut showed lymphangiectasia, lymphatic up-regulation of the transforming growth factor-beta co-receptor endoglin, and reduced levels of mature vascular endothelial growth factor-C protein. Our data suggest that Pik3r1 isoforms are required for distinct steps of embryonic lymphangiogenesis in different organ microenvironments, whereas they are largely dispensable for hemangiogenesis.
Resumo:
Congenital heart defect (CHD) occurs in 40% of Down syndrome (DS) cases. While carrying three copies of chromosome 21 increases the risk for CHD, trisomy 21 itself is not sufficient to cause CHD. Thus, additional genetic variation and/or environmental factors could contribute to the CHD risk. Here we report genomic variations that in concert with trisomy 21, determine the risk for CHD in DS. This case-control GWAS includes 187 DS with CHD (AVSD = 69, ASD = 53, VSD = 65) as cases, and 151 DS without CHD as controls. Chromosome 21-specific association studies revealed rs2832616 and rs1943950 as CHD risk alleles (adjusted genotypic P-values <0.05). These signals were confirmed in a replication cohort of 92 DS-CHD cases and 80 DS-without CHD (nominal P-value 0.0022). Furthermore, CNV analyses using a customized chromosome 21 aCGH of 135K probes in 55 DS-AVSD and 53 DS-without CHD revealed three CNV regions associated with AVSD risk (FDR ≤ 0.05). Two of these regions that are located within the previously identified CHD region on chromosome 21 were further confirmed in a replication study of 49 DS-AVSD and 45 DS- without CHD (FDR ≤ 0.05). One of these CNVs maps near the RIPK4 gene, and the second includes the ZBTB21 (previously ZNF295) gene, highlighting the potential role of these genes in the pathogenesis of CHD in DS. We propose that the genetic architecture of the CHD risk of DS is complex and includes trisomy 21, and SNP and CNV variations in chromosome 21. In addition, a yet-unidentified genetic variation in the rest of the genome may contribute to this complex genetic architecture.
Resumo:
Microphthalmia with linear skin defects (MLS) syndrome is an X-linked male-lethal disorder also known as MIDAS (microphthalmia, dermal aplasia, and sclerocornea). Additional clinical features include neurological and cardiac abnormalities. MLS syndrome is genetically heterogeneous given that heterozygous mutations in HCCS or COX7B have been identified in MLS-affected females. Both genes encode proteins involved in the structure and function of complexes III and IV, which form the terminal segment of the mitochondrial respiratory chain (MRC). However, not all individuals with MLS syndrome carry a mutation in either HCCS or COX7B. The majority of MLS-affected females have severe skewing of X chromosome inactivation, suggesting that mutations in HCCS, COX7B, and other as-yet-unidentified X-linked gene(s) cause selective loss of cells in which the mutated X chromosome is active. By applying whole-exome sequencing and filtering for X-chromosomal variants, we identified a de novo nonsense mutation in NDUFB11 (Xp11.23) in one female individual and a heterozygous 1-bp deletion in a second individual, her asymptomatic mother, and an affected aborted fetus of the subject's mother. NDUFB11 encodes one of 30 poorly characterized supernumerary subunits of NADH:ubiquinone oxidoreductase, known as complex I (cI), the first and largest enzyme of the MRC. By shRNA-mediated NDUFB11 knockdown in HeLa cells, we demonstrate that NDUFB11 is essential for cI assembly and activity as well as cell growth and survival. These results demonstrate that X-linked genetic defects leading to the complete inactivation of complex I, III, or IV underlie MLS syndrome. Our data reveal an unexpected role of cI dysfunction in a developmental phenotype, further underscoring the existence of a group of mitochondrial diseases associated with neurocutaneous manifestations.
Resumo:
Mutations in GDAP1, which encodes protein located in the mitochondrial outer membrane, cause axonal recessive (AR-CMT2), axonal dominant (CMT2K) and demyelinating recessive (CMT4A) forms of Charcot-Marie-Tooth (CMT) neuropathy. Loss of function recessive mutations in GDAP1 are associated with decreased mitochondrial fission activity, while dominant mutations result in impairment of mitochondrial fusion with increased production of reactive oxygen species and susceptibility to apoptotic stimuli. GDAP1 silencing in vitro reduces Ca2+ inflow through store-operated Ca2+ entry (SOCE) upon mobilization of endoplasmic reticulum (ER) Ca2+, likely in association with an abnormal distribution of the mitochondrial network. To investigate the functional consequences of lack of GDAP1 in vivo, we generated a Gdap1 knockout mouse. The affected animals presented abnormal motor behavior starting at the age of 3 months. Electrophysiological and biochemical studies confirmed the axonal nature of the neuropathy whereas histopathological studies over time showed progressive loss of motor neurons (MNs) in the anterior horn of the spinal cord and defects in neuromuscular junctions. Analyses of cultured embryonic MNs and adult dorsal root ganglia neurons from affected animals demonstrated large and defective mitochondria, changes in the ER cisternae, reduced acetylation of cytoskeletal α-tubulin and increased autophagy vesicles. Importantly, MNs showed reduced cytosolic calcium and SOCE response. The development and characterization of the GDAP1 neuropathy mice model thus revealed that some of the pathophysiological changes present in axonal recessive form of the GDAP1-related CMT might be the consequence of changes in the mitochondrial network biology and mitochondria-endoplasmic reticulum interaction leading to abnormalities in calcium homeostasis.
Resumo:
The Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency characterized by recurrent infections, thrombocytopenia, eczema, and high incidence of malignancy and autoimmunity. The cellular mechanisms underlying autoimmune complications in WAS have been extensively studied; however, they remain incompletely defined. We investigated the characteristics of IL-10-producing CD19+CD1dhighCD5+ B cells (CD1dhighCD5+ Breg) obtained from Was gene knockout (WKO) mice and found that their numbers were significantly lower in these mice compared to wild type (WT) controls. Moreover, we found a significant age-dependent reduction of the percentage of IL-10-expressing cells in WKO CD1dhighCD5+ Breg cells as compared to age-matched WT control mice. CD1dhighCD5+ Breg cells from older WKO mice did not suppress the in vitro production of inflammatory cytokines from activated CD4+ T cells. Interestingly, CD1dhighCD5+ Breg cells from older WKO mice displayed a basal activated phenotype which may prevent normal cellular responses, among which is the expression of IL-10. These defects may contribute to the susceptibility to autoimmunity with age in patients with WAS.
Resumo:
STUDY QUESTION: What are the long term trends in the total (live births, fetal deaths, and terminations of pregnancy for fetal anomaly) and live birth prevalence of neural tube defects (NTD) in Europe, where many countries have issued recommendations for folic acid supplementation but a policy for mandatory folic acid fortification of food does not exist? METHODS: This was a population based, observational study using data on 11 353 cases of NTD not associated with chromosomal anomalies, including 4162 cases of anencephaly and 5776 cases of spina bifida from 28 EUROCAT (European Surveillance of Congenital Anomalies) registries covering approximately 12.5 million births in 19 countries between 1991 and 2011. The main outcome measures were total and live birth prevalence of NTD, as well as anencephaly and spina bifida, with time trends analysed using random effects Poisson regression models to account for heterogeneities across registries and splines to model non-linear time trends. SUMMARY ANSWER AND LIMITATIONS: Overall, the pooled total prevalence of NTD during the study period was 9.1 per 10 000 births. Prevalence of NTD fluctuated slightly but without an obvious downward trend, with the final estimate of the pooled total prevalence of NTD in 2011 similar to that in 1991. Estimates from Poisson models that took registry heterogeneities into account showed an annual increase of 4% (prevalence ratio 1.04, 95% confidence interval 1.01 to 1.07) in 1995-99 and a decrease of 3% per year in 1999-2003 (0.97, 0.95 to 0.99), with stable rates thereafter. The trend patterns for anencephaly and spina bifida were similar, but neither anomaly decreased substantially over time. The live birth prevalence of NTD generally decreased, especially for anencephaly. Registration problems or other data artefacts cannot be excluded as a partial explanation of the observed trends (or lack thereof) in the prevalence of NTD. WHAT THIS STUDY ADDS: In the absence of mandatory fortification, the prevalence of NTD has not decreased in Europe despite longstanding recommendations aimed at promoting peri-conceptional folic acid supplementation and existence of voluntary folic acid fortification. FUNDING, COMPETING INTERESTS, DATA SHARING: The study was funded by the European Public Health Commission, EUROCAT Joint Action 2011-2013. HD and ML received support from the European Commission DG Sanco during the conduct of this study. No additional data available.
Resumo:
BACKGROUND: Alzheimer's disease (AD) is the most frequent form of dementia in the elderly and no effective treatment is currently available. The mechanisms triggering AD onset and progression are still imperfectly dissected. We aimed at deciphering the modifications occurring in vivo during the very early stages of AD, before the development of amyloid deposits, neurofibrillary tangles, neuronal death and inflammation. Most current AD models based on Amyloid Precursor Protein (APP) overproduction beginning from in utero, to rapidly reproduce the histological and behavioral features of the disease within a few months, are not appropriate to study the early steps of AD development. As a means to mimic in vivo amyloid APP processing closer to the human situation in AD, we used an adeno-associated virus (AAV)-based transfer of human mutant APP and Presenilin 1 (PS1) genes to the hippocampi of two-month-old C57Bl/6 J mice to express human APP, without significant overexpression and to specifically induce its amyloid processing. RESULTS: The human APP, βCTF and Aβ42/40 ratio were similar to those in hippocampal tissues from AD patients. Three months after injection the murine Tau protein was hyperphosphorylated and rapid synaptic failure occurred characterized by decreased levels of both PSD-95 and metabolites related to neuromodulation, on proton magnetic resonance spectroscopy ((1)H-MRS). Astrocytic GLT-1 transporter levels were lower and the tonic glutamatergic current was stronger on electrophysiological recordings of CA1 hippocampal region, revealing the overstimulation of extrasynaptic N-methyl D-aspartate receptor (NMDAR) which precedes the loss of long-term potentiation (LTP). These modifications were associated with early behavioral impairments in the Open-field, Y-maze and Morris Mater Maze tasks. CONCLUSIONS: Altogether, this demonstrates that an AD-like APP processing, yielding to levels of APP, βCTF and Aβ42/Aβ40 ratio similar to those observed in AD patients, are sufficient to rapidly trigger early steps of the amyloidogenic and Tau pathways in vivo. With this strategy, we identified a sequence of early events likely to account for disease onset and described a model that may facilitate efforts to decipher the factors triggering AD and to evaluate early neuroprotective strategies.
Resumo:
Background The distally based anterolateral thigh (ALT) flap is an interesting reconstructive solution for complex soft tissue defects of the knee. In spite of a low donor site morbidity and wide covering surface as well as arch of rotation, it has never gained popularity among reconstructive surgeons. Venous congestion and difficult flap dissection in the presence of a variable anatomy of the vascular pedicle are the possible reasons.Methods An anatomical study of 15 cadaver legs was performed to further clarify the blood supply of the distally based ALT. Our early experience with the use of preoperative angiography and a safe flap design modification that avoids distal intramuscular skeletonization of the vascular pedicle and includes a subcutaneous strip ranging from the distal end of the flap to the pivot point is presented.Results The distally based ALT presents a constant and reliable retrograde vascular contribution from the superior genicular artery. Preoperative angiography reliably identified and avoided critical Shieh Type II pedicled flaps. The preservation of a subcutaneous strip ranging from the distal flap end to the upper knee was associated with the absence of venous congestion in a short case series.Conclusions Preoperative angiography and a flap design modification are proposed to allow the safe transfer of the distally based ALT to reconstruct soft tissue defects of the knee.
Resumo:
The voltage-gated cardiac potassium channel hERG1 (human ether-à-gogo-related gene 1) plays a key role in the repolarization phase of the cardiac action potential (AP). Mutations in its gene, KCNH2, can lead to defects in the biosynthesis and maturation of the channel, resulting in congenital long QT syndrome (LQTS). To identify the molecular mechanisms regulating the density of hERG1 channels at the plasma membrane, we investigated channel ubiquitylation by ubiquitin ligase Nedd4-2, a post-translational regulatory mechanism previously linked to other ion channels. We found that whole-cell hERG1 currents recorded in HEK293 cells were decreased upon neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2) co-expression. The amount of hERG1 channels in total HEK293 lysates and at the cell surface, as assessed by Western blot and biotinylation assays, respectively, were concomitantly decreased. Nedd4-2 and hERG1 interact via a PY motif located in the C-terminus of hERG1. Finally, we determined that Nedd4-2 mediates ubiquitylation of hERG1 and that deletion of this motif affects Nedd4-2-dependent regulation. These results suggest that ubiquitylation of the hERG1 protein by Nedd4-2, and its subsequent down-regulation, could represent an important mechanism for modulation of the duration of the human cardiac action potential.
Resumo:
BACKGROUND: This study describes the prevalence, associated anomalies, and demographic characteristics of cases of multiple congenital anomalies (MCA) in 19 population-based European registries (EUROCAT) covering 959,446 births in 2004 and 2010. METHODS: EUROCAT implemented a computer algorithm for classification of congenital anomaly cases followed by manual review of potential MCA cases by geneticists. MCA cases are defined as cases with two or more major anomalies of different organ systems, excluding sequences, chromosomal and monogenic syndromes. RESULTS: The combination of an epidemiological and clinical approach for classification of cases has improved the quality and accuracy of the MCA data. Total prevalence of MCA cases was 15.8 per 10,000 births. Fetal deaths and termination of pregnancy were significantly more frequent in MCA cases compared with isolated cases (p < 0.001) and MCA cases were more frequently prenatally diagnosed (p < 0.001). Live born infants with MCA were more often born preterm (p < 0.01) and with birth weight < 2500 grams (p < 0.01). Respiratory and ear, face, and neck anomalies were the most likely to occur with other anomalies (34% and 32%) and congenital heart defects and limb anomalies were the least likely to occur with other anomalies (13%) (p < 0.01). However, due to their high prevalence, congenital heart defects were present in half of all MCA cases. Among males with MCA, the frequency of genital anomalies was significantly greater than the frequency of genital anomalies among females with MCA (p < 0.001). CONCLUSION: Although rare, MCA cases are an important public health issue, because of their severity. The EUROCAT database of MCA cases will allow future investigation on the epidemiology of these conditions and related clinical and diagnostic problems.