55 resultados para Local-regional space


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The type of anesthesia to be used for total hip arthroplasty (THA) is still a matter of debate. We compared the occurrence of per- and post-anesthesia incidents in patients receiving either general (GA) or regional anesthesia (RA). Methods: We used data from 29 hospitals, routinely collected in the Anaesthesia Databank Switzerland register between January 2001 and December 2003. We used multi-level logistic regression models. Results: There were more per- and post-anesthesia incidents under GA compared to RA (35.1% vs 32.7 %, n = 3191, and 23.1% vs 19.4%, n = 3258, respectively). In multi-level logistic regression analysis, RA was significantly associated with a lower incidence of per-anesthetic problems, especially hypertension, compared with GA. During the post-anesthetic period, RA was also less associated with pain. Conversely, RA was more associated with post-anesthetic hypotension, especially for epidural technique. In addition, age and ASA were more associated with incidents under GA compared to RA. Men were more associated with per-anesthetic problems under RA compared to GA. Whereas increased age (>67), gender (male), and ASA were linked with the choice of RA, we noticed that this choice depended also on hospital practices after we adjusted for the other variables. Conclusions: Compared to RA, GA was associated with an increased proportion of per- and post-anesthesia incidents. Although this study is only observational, it is rooted in daily practice. Whereas RA might be routinely proposed, GA might be indicated because of contraindications to RA, patients' preferences or other surgical or anaesthesiology related reasons. Finally, the choice of a type of anesthesia seems to depend on local practices that may differ between hospitals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Normal ageing is associated with characteristic changes in brain microstructure. Although in vivo neuroimaging captures spatial and temporal patterns of age-related changes of anatomy at the macroscopic scale, our knowledge of the underlying (patho)physiological processes at cellular and molecular levels is still limited. The aim of this study is to explore brain tissue properties in normal ageing using quantitative magnetic resonance imaging (MRI) alongside conventional morphological assessment. Using a whole-brain approach in a cohort of 26 adults, aged 18-85years, we performed voxel-based morphometric (VBM) analysis and voxel-based quantification (VBQ) of diffusion tensor, magnetization transfer (MT), R1, and R2* relaxation parameters. We found age-related reductions in cortical and subcortical grey matter volume paralleled by changes in fractional anisotropy (FA), mean diffusivity (MD), MT and R2*. The latter were regionally specific depending on their differential sensitivity to microscopic tissue properties. VBQ of white matter revealed distinct anatomical patterns of age-related change in microstructure. Widespread and profound reduction in MT contrasted with local FA decreases paralleled by MD increases. R1 reductions and R2* increases were observed to a smaller extent in overlapping occipito-parietal white matter regions. We interpret our findings, based on current biophysical models, as a fingerprint of age-dependent brain atrophy and underlying microstructural changes in myelin, iron deposits and water. The VBQ approach we present allows for systematic unbiased exploration of the interaction between imaging parameters and extends current methods for detection of neurodegenerative processes in the brain. The demonstrated parameter-specific distribution patterns offer insights into age-related brain structure changes in vivo and provide essential baseline data for studying disease against a background of healthy ageing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim. To predict the fate of alpine interactions involving specialized species, using a monophagous beetle and its host-plant as a case study. Location. The Alps. Methods. We investigated genetic structuring of the herbivorous beetle Oreina gloriosa and its specific host-plant Peucedanum ostruthium. We used genome fingerprinting (in the insect and the plant) and sequence data (in the insect) to compare the distribution of the main gene pools in the two associated species and to estimate divergence time in the insect, a proxy for the temporal origin of the interaction. We quantified the similarity in spatial genetic structures by performing a Procrustes analysis, a tool from the shape theory. Finally, we simulated recolonization of an empty space analogous to the deglaciated Alps just after ice retreat by two lineages from two species showing unbalanced dependence, to examine how timing of the recolonization process, as well as dispersal capacities of associated species, could explain the observed pattern. Results. Contrasting with expectations based on their asymmetrical dependence, patterns in the beetle and plant were congruent at a large scale. Exceptions occurred at a regional scale in areas of admixture, matching known suture zones in Alpine plants. Simulations using a lattice-based model suggested these empirical patterns arose during or soon after recolonization, long after the estimated origin of the interaction c. 0.5 million years ago. Main conclusions. Species-specific interactions are scarce in alpine habitats because glacial cycles have limited opportunities for coevolution. Their fate, however, remains uncertain under climate change. Here we show that whereas most dispersal routes are paralleled at large scale, regional incongruence implies that the destinies of the species might differ under changing climate. This may be a consequence of the host-dependence of the beetle that locally limits the establishment of dispersing insects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The type of anesthesia to be used for total hip arthroplasty (THA) is still a matter of debate. We compared the occurrence of per- and post-anesthesia incidents in patients receiving either general (GA) or regional anesthesia (RA). Methods: We used data from 29 hospitals, routinely collected in the Anaesthesia Databank Switzerland register between January 2001 and December 2003. We used multi-level logistic regression models. Results: There were more per- and post-anesthesia incidents under GA compared to RA (35.1% vs 32.7 %, n = 3191, and 23.1% vs 19.4%, n = 3258, respectively). In multi-level logistic regression analysis, RA was significantly associated with a lower incidence of per-anesthetic problems, especially hypertension, compared with GA. During the post-anesthetic period, RA was also less associated with pain. Conversely, RA was more associated with post-anesthetic hypotension, especially for epidural technique. In addition, age and ASA were more associated with incidents under GA compared to RA. Men were more associated with per-anesthetic problems under RA compared to GA. Whereas increased age (>67), gender (male), and ASA were linked with the choice of RA, we noticed that this choice depended also on hospital practices after we adjusted for the other variables. Conclusions: Compared to RA, GA was associated with an increased proportion of per- and post-anesthesia incidents. Although this study is only observational, it is rooted in daily practice. Whereas RA might be routinely proposed, GA might be indicated because of contraindications to RA, patients' preferences or other surgical or anaesthesiology related reasons. Finally, the choice of a type of anesthesia seems to depend on local practices that may differ between hospitals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In groundwater applications, Monte Carlo methods are employed to model the uncertainty on geological parameters. However, their brute-force application becomes computationally prohibitive for highly detailed geological descriptions, complex physical processes, and a large number of realizations. The Distance Kernel Method (DKM) overcomes this issue by clustering the realizations in a multidimensional space based on the flow responses obtained by means of an approximate (computationally cheaper) model; then, the uncertainty is estimated from the exact responses that are computed only for one representative realization per cluster (the medoid). Usually, DKM is employed to decrease the size of the sample of realizations that are considered to estimate the uncertainty. We propose to use the information from the approximate responses for uncertainty quantification. The subset of exact solutions provided by DKM is then employed to construct an error model and correct the potential bias of the approximate model. Two error models are devised that both employ the difference between approximate and exact medoid solutions, but differ in the way medoid errors are interpolated to correct the whole set of realizations. The Local Error Model rests upon the clustering defined by DKM and can be seen as a natural way to account for intra-cluster variability; the Global Error Model employs a linear interpolation of all medoid errors regardless of the cluster to which the single realization belongs. These error models are evaluated for an idealized pollution problem in which the uncertainty of the breakthrough curve needs to be estimated. For this numerical test case, we demonstrate that the error models improve the uncertainty quantification provided by the DKM algorithm and are effective in correcting the bias of the estimate computed solely from the MsFV results. The framework presented here is not specific to the methods considered and can be applied to other combinations of approximate models and techniques to select a subset of realizations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: In humans, local heating increases skin perfusion by mechanisms dependent on nitric oxide (NO). Because the vascular effects of NO may be subject to desensitization, we examined whether a first local thermal stimulus would attenuate the hyperemic response to a second one applied later. METHODS: Twelve healthy young men were studied. Skin blood flow (SkBF) was measured on forearm skin with laser Doppler imaging. Local thermal stimuli (temperature step from 34 to 41 degrees C maintained for 30 minutes) were applied with temperature-controlled chambers. We also tested the influence of prior local heating on the vasodilation induced by sodium nitroprusside (SNP), a donor of NO. RESULTS: On reheating the same spot after two hours, the response of SkBF (i.e., plateau SkBF at 30 minutes minus SkBF at 34 degrees C) was lower than during the first stimulation (mean+/-SD 404+/-212 perfusion units [PU] vs. 635+/-100 PU; P<0.001). There was no such difference when reheating after four hours (654+/-153 vs. 645+/-103 PU; P=NS). Two, but not four, hours after local heating, the response of SkBF to SNP was reduced. CONCLUSION: The NO-dependent hyperemic response induced by local heating in human skin is subject to desensitization. At least one part of the mechanism implicated consists of a desensitization to the effects of NO itself.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cortical folding (gyrification) is determined during the first months of life, so that adverse events occurring during this period leave traces that will be identifiable at any age. As recently reviewed by Mangin and colleagues(2), several methods exist to quantify different characteristics of gyrification. For instance, sulcal morphometry can be used to measure shape descriptors such as the depth, length or indices of inter-hemispheric asymmetry(3). These geometrical properties have the advantage of being easy to interpret. However, sulcal morphometry tightly relies on the accurate identification of a given set of sulci and hence provides a fragmented description of gyrification. A more fine-grained quantification of gyrification can be achieved with curvature-based measurements, where smoothed absolute mean curvature is typically computed at thousands of points over the cortical surface(4). The curvature is however not straightforward to comprehend, as it remains unclear if there is any direct relationship between the curvedness and a biologically meaningful correlate such as cortical volume or surface. To address the diverse issues raised by the measurement of cortical folding, we previously developed an algorithm to quantify local gyrification with an exquisite spatial resolution and of simple interpretation. Our method is inspired of the Gyrification Index(5), a method originally used in comparative neuroanatomy to evaluate the cortical folding differences across species. In our implementation, which we name local Gyrification Index (lGI(1)), we measure the amount of cortex buried within the sulcal folds as compared with the amount of visible cortex in circular regions of interest. Given that the cortex grows primarily through radial expansion(6), our method was specifically designed to identify early defects of cortical development. In this article, we detail the computation of local Gyrification Index, which is now freely distributed as a part of the FreeSurfer Software (http://surfer.nmr.mgh.harvard.edu/, Martinos Center for Biomedical Imaging, Massachusetts General Hospital). FreeSurfer provides a set of automated reconstruction tools of the brain's cortical surface from structural MRI data. The cortical surface extracted in the native space of the images with sub-millimeter accuracy is then further used for the creation of an outer surface, which will serve as a basis for the lGI calculation. A circular region of interest is then delineated on the outer surface, and its corresponding region of interest on the cortical surface is identified using a matching algorithm as described in our validation study(1). This process is repeatedly iterated with largely overlapping regions of interest, resulting in cortical maps of gyrification for subsequent statistical comparisons (Fig. 1). Of note, another measurement of local gyrification with a similar inspiration was proposed by Toro and colleagues(7), where the folding index at each point is computed as the ratio of the cortical area contained in a sphere divided by the area of a disc with the same radius. The two implementations differ in that the one by Toro et al. is based on Euclidian distances and thus considers discontinuous patches of cortical area, whereas ours uses a strict geodesic algorithm and include only the continuous patch of cortical area opening at the brain surface in a circular region of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cette recherche s'applique aux témoins glaciaires des Chablais dans quatre de leurs dimensions : géopatrimoine, connaissance objective, inventaire de géosites et valorisation. Elle est organisée sur le canevas d'un processus de patrimonialisation auquel elle participe et qu'elle interroge à la fois. En 2009, débutait le projet 123 Chablais, pour une durée de quatre ans. Il concernait l'ensemble du territoire chablaisien, réparti sur deux pays (France et Suisse) et trois entités administratives (département de la Haute-Savoie, cantons de Vaud et du Valais). Ce projet, élaboré dans le cadre du programme Interreg IV France-Suisse, avait pour but de dynamiser le développement économique local en s'appuyant sur les patrimoines régionaux. Le géopatrimoine, identifié comme une de ces ressources, faisait donc l'objet de plusieurs actions, dont cette recherche. En parallèle, le Chablais haut-savoyard préparait sa candidature pour rejoindre l'European Geopark Network (EGN). Son intégration, effective dès 2012, a fait de ce territoire le cinquième géoparc français du réseau. Le Geopark du Chablais fonde son identité géologique sur l'eau et la glace, deux thématiques intimement liées aux témoins glaciaires. Dans ce contexte d'intérêt pour le géopatrimoine local et en particulier pour le patrimoine glaciaire, plusieurs missions ont été assignées à cette recherche qui devait à la fois améliorer la connaissance objective des témoins glaciaires, inventorier les géosites glaciaires et valoriser le patrimoine glaciaire. Le premier objectif de ce travail était d'acquérir une vision synthétique des témoins glaciaires. Il a nécessité une étape de synthèse bibliographique ainsi que sa spatialisation, afin d'identifier les lacunes de connaissance et la façon dont ce travail pouvait contribuer à les combler. Sur cette base, plusieurs méthodes ont été mises en oeuvre : cartographie géomorphologique, reconstitution des lignes d'équilibre glaciaires et datations de blocs erratiques à l'aide des isotopes cosmogéniques produits in situ. Les cartes géomorphologiques ont été élaborées en particulier dans les cirques et vallons glaciaires. Les datations cosmogéniques ont été concentrées sur deux stades du glacier du Rhône : le Last Local Glacial Maximum (LLGM) et le stade de Monthey. Au terme de cette étape, les spécificités du patrimoine glaciaire régional se sont révélées être 1) une grande diversité de formes et des liens étroits avec différents autres processus géomorphologiques ; 2) une appartenance des témoins glaciaires à dix grandes étapes de la déglaciation du bassin lémanique. Le second objectif était centré sur le processus d'inventaire des géosites glaciaires. Nous avons mis l'accent sur la sélection du géopatrimoine en développant une approche basée sur deux axes (temps et espace) identifiés dans le volet précédent et avons ainsi réalisé un inventaire à thèmes, composé de 32 géosites. La structure de l'inventaire a également été explorée de façon à intégrer des critères d'usage de ces géosites. Cette démarche, soutenue par une réflexion sur les valeurs attribuées au géopatrimoine et sur la façon d'évaluer ces valeurs, nous a permis de mettre en évidence le point de vue anthropo - et scientifico - centré qui prévaut nettement dans la recherche européenne sur le géopatrimoine. L'analyse des résultats de l'inventaire a fait apparaître quelques caractéristiques du patrimoine glaciaire chablaisien, discret, diversifié, et comportant deux spécificités exploitables dans le cadre d'une médiation scientifique : son statut de « berceau de la théorie glaciaire » et ses liens étroits avec des activités de la vie quotidienne, en tant que matière première, support de loisir ou facteur de risque. Cette recherche a débouché sur l'élaboration d'une exposition itinérante sur le patrimoine glaciaire des Chablais. Ce produit de valorisation géotouristique a été conçu pour sensibiliser la population locale à l'impact des glaciers sur son territoire. Il présente une série de sept cartes de stades glaciaires, encadrées par les deux mêmes thématiques, l'histoire de la connaissance glaciaire d'une part, les témoins glaciaires et la société, d'autre part. -- This research focuses on glacial witnesses in the Chablais area according to four dimensions : geoheritage, objective knowledge, inventory and promotion of geosites. It is organized on the model of an heritage's process which it participates and that it questions both. In 2009, the project 123 Chablais started for a period of four years. It covered the entire chablaisien territory spread over two countries and three administrative entities (département of Haute-Savoie, canton of Vaud, canton of Valais). This project, developed in the framework of the Interreg IV France-Switzerland program, aimed to boost the local development through regional heritage. The geoheritage identified as one of these resources, was therefore the subject of several actions, including this research. In parallel, the French Chablais was preparing its application to join the European Geopark Network (EGN). Its integration, effective since 2012, made of this area the fifth French Geopark of the network. The Chablais Geopark geological identity was based on water and ice, two themes closely linked to the glacial witnesses. In this context of interest for the regional geoheritage and especially for the glacial heritage, several missions have been assigned to this research which should improve objective knowledge of glacial witnesses, inventory and assess glacial geosites. The objective knowledge's component was to acquire a synthetic vision of the glacial witnesses. It required a first bibliography synthesis step in order to identify gaps in knowledge and how this work could help to fill them. On this basis, several methods have been implemented: geomorphological mapping, reconstruction of the equilibrium-line altitude and dating of glacial erratic blocks using cosmogenic isotopes produced in situ. Geomorphological maps have been developed especially in glacial cirques and valleys. Cosmogenic datings were concentrated on two stages of the Rhone glacier: the Last Local Glacial Maximum (LLGM) and « the stage of Monthey ». After this step, the specificities of the regional glacial heritage have emerged to us as 1) a wide variety of forms and links to various other geomorphological processes; 2) belonging of glacial witnesses to ten major glacial stages of Léman Lake's deglaciation. In the inventory of glacial geosites component we focused on the selection of geoheritage. We developed an approach based on two axes (time and space) identified in the preceding components. We obtained a thematic inventory, consisting of 32 geosites. The structure of the inventory was also explored in the aim to integrate use criteria of geosites. This approach, supported by a thought on the values attributed to the geoheritage and how to assess these values allowed us to highlight the point of view much anthropological - and scientific -centered prevailing in the European research on geoheritage. The analysis of the inventory's results revealed some characteristics of chablaisien glacial heritage, discrete, diverse, and with two features exploitable in the context of a scientific mediation: its status as « cradle of the glacial theory » and its close links with activities of daily life, as raw material, leisure support and risk factor. This research leads to the development of a traveling exhibition on the glacial heritage of the Chablais area. It presents a series of seven glacial stage's cards, framed by the two themes mentioned above: « history of glacial knowledge » and « glacial witnesses and society ».

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Agenda 21 for the Geneva region is the results from a broad consultation process including all local actors. The article 12 stipulates that « the State facilitates possible synergies between economic activities in order to minimize their environmental impacts » thus opening the way for Industrial Ecology (IE) and Industrial Symbiosis (IS). An Advisory Board for Industrial Ecology and Industrial Symbiosis implementation was established in 2002 involving relevant government agencies. Regulatory and technical conditions for IS are studied in the Swiss context. Results reveal that the Swiss law on waste does not hinder by-product exchanges. Methodology and technical factors including geographic, qualitative, quantitative and economical aspects are detailed. The competition with waste operators in a highly developed recycling system is also tackled.The IS project develops an empirical and systematic method for detecting and implementing by-products synergies between industrial actors disseminated throughout the Geneva region. Database management tool for the treatment of input-output analysis data and GIS tools for detecting potentials industrial partners are constantly improved. Potential symbioses for 17 flows (including energy, water and material flows) are currently studied for implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation and structural evolution of the jungrau syncline is described, based on excellent outcrops occurring in the lotschental, in the central alps of switzerland. the quality of the outcrops allows us to demonstrate that the external massifs of the swiss alps have developed due to internal folding. The jungfrau suncline, which separates the autochtonous gastern dome from the aar massif basement gneiss folds, is composed of slivers of basement rocks with their mesozoic sedimentary cover. in the inner faflertal, a side valley of the lotschental, the 200 m thick syncline cp, roses fpir imots, the gastern massif with a reduced mesozoic sedimentary cover in a normal stratigraphic succession, two units of overturned basement rocks with their mesozoic sedimentary cover, and the overturned lower limn of the tschingelhorn gneiss fold of the aar massif with lenses of its sedimentary cover. stratigraphy shows that the lower units, related to the gastern massis, are condensed and that the upper units, deposited farther away from a gastern paleo-high, form a more complete sequence, linked to the doldenhorn meso-cneozoic basin fill. the integration of these local observations with published regional data leads to the following model. on the northern margin of the doldenhorn hbasin, at the northern fringe of the alpine tethuys, the pre-triassic crystalline basement and its mesozoic sedimentary cover were folded by ductile deformation at temperatures above 300 degrees C and in the presence of high fluid pressures, as the helveti c and penninic nappes were overthrusted towards the northwest during the main alpine deformation phase, the visosity contrast between the basement gneisses and the sediments caused the formation of large basement anticlines and tight sedimentary sunclines (mullion-type structures). The edges of basement blocks bounded buy pre-cursor se-dipping normal faults at the northwestern border of the doldenhorn basin were deformed bu simple shear, creating overturned slices of crystalline rocks with their sedimentary cover in what now forms the hungfrau syncline. the localisation of ductile deformation in the vicinity of pre-existing se-dipping faults is thought to have been helped by the circulation of fluids along the faults; these fluids would have been released from the mesozoic sediments by metamorphic dehydration reactions accompanied by creep and dynamic recrystallisation of quartz at temperatures above 300 degrees C. Quantification of the deformation suggests an strain ellipsoid with a ratio (1 + e(1)/+ e(3)) of approximately 1000. The jungfrau suncline was deformed bu more brittle nw-directed shear creating well-developed shear band cleavages at a late stage, after cooling by uplift and erosion. It is suggested that the external massifs of the apls are basement gneiss folds created at temperatures of 300 degrees C by detachment through ductile deformation of the upper crust of the european plate as it was underthrusted below the adriatic plate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Astrocytes communicate with synapses by means of intracellular calcium ([Ca(2+)](i)) elevations, but local calcium dynamics in astrocytic processes have never been thoroughly investigated. By taking advantage of high-resolution two-photon microscopy, we identify the characteristics of local astrocyte calcium activity in the adult mouse hippocampus. Astrocytic processes showed intense activity, triggered by physiological transmission at neighboring synapses. They encoded synchronous synaptic events generated by sparse action potentials into robust regional (∼12 μm) [Ca(2+)](i) elevations. Unexpectedly, they also sensed spontaneous synaptic events, producing highly confined (∼4 μm), fast (millisecond-scale) miniature Ca(2+) responses. This Ca(2+) activity in astrocytic processes is generated through GTP- and inositol-1,4,5-trisphosphate-dependent signaling and is relevant for basal synaptic function. Thus, buffering astrocyte [Ca(2+)](i) or blocking a receptor mediating local astrocyte Ca(2+) signals decreased synaptic transmission reliability in minimal stimulation experiments. These data provide direct evidence that astrocytes are integrated in local synaptic functioning in adult brain.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary Due to their conic shape and the reduction of area with increasing elevation, mountain ecosystems were early identified as potentially very sensitive to global warming. Moreover, mountain systems may experience unprecedented rates of warming during the next century, two or three times higher than that records of the 20th century. In this context, species distribution models (SDM) have become important tools for rapid assessment of the impact of accelerated land use and climate change on the distribution plant species. In my study, I developed and tested new predictor variables for species distribution models (SDM), specific to current and future geographic projections of plant species in a mountain system, using the Western Swiss Alps as model region. Since meso- and micro-topography are relevant to explain geographic patterns of plant species in mountain environments, I assessed the effect of scale on predictor variables and geographic projections of SDM. I also developed a methodological framework of space-for-time evaluation to test the robustness of SDM when projected in a future changing climate. Finally, I used a cellular automaton to run dynamic simulations of plant migration under climate change in a mountain landscape, including realistic distance of seed dispersal. Results of future projections for the 21st century were also discussed in perspective of vegetation changes monitored during the 20th century. Overall, I showed in this study that, based on the most severe A1 climate change scenario and realistic dispersal simulations of plant dispersal, species extinctions in the Western Swiss Alps could affect nearly one third (28.5%) of the 284 species modeled by 2100. With the less severe 61 scenario, only 4.6% of species are predicted to become extinct. However, even with B1, 54% (153 species) may still loose more than 80% of their initial surface. Results of monitoring of past vegetation changes suggested that plant species can react quickly to the warmer conditions as far as competition is low However, in subalpine grasslands, competition of already present species is probably important and limit establishment of newly arrived species. Results from future simulations also showed that heavy extinctions of alpine plants may start already in 2040, but the latest in 2080. My study also highlighted the importance of fine scale and regional. assessments of climate change impact on mountain vegetation, using more direct predictor variables. Indeed, predictions at the continental scale may fail to predict local refugees or local extinctions, as well as loss of connectivity between local populations. On the other hand, migrations of low-elevation species to higher altitude may be difficult to predict at the local scale. Résumé La forme conique des montagnes ainsi que la diminution de surface dans les hautes altitudes sont reconnues pour exposer plus sensiblement les écosystèmes de montagne au réchauffement global. En outre, les systèmes de montagne seront sans doute soumis durant le 21ème siècle à un réchauffement deux à trois fois plus rapide que celui mesuré durant le 20ème siècle. Dans ce contexte, les modèles prédictifs de distribution géographique de la végétation se sont imposés comme des outils puissants pour de rapides évaluations de l'impact des changements climatiques et de la transformation du paysage par l'homme sur la végétation. Dans mon étude, j'ai développé de nouvelles variables prédictives pour les modèles de distribution, spécifiques à la projection géographique présente et future des plantes dans un système de montagne, en utilisant les Préalpes vaudoises comme zone d'échantillonnage. La méso- et la microtopographie étant particulièrement adaptées pour expliquer les patrons de distribution géographique des plantes dans un environnement montagneux, j'ai testé les effets d'échelle sur les variables prédictives et sur les projections des modèles de distribution. J'ai aussi développé un cadre méthodologique pour tester la robustesse potentielle des modèles lors de projections pour le futur. Finalement, j'ai utilisé un automate cellulaire pour simuler de manière dynamique la migration future des plantes dans le paysage et dans quatre scénarios de changement climatique pour le 21ème siècle. J'ai intégré dans ces simulations des mécanismes et des distances plus réalistes de dispersion de graines. J'ai pu montrer, avec les simulations les plus réalistes, que près du tiers des 284 espèces considérées (28.5%) pourraient être menacées d'extinction en 2100 dans le cas du plus sévère scénario de changement climatique A1. Pour le moins sévère des scénarios B1, seulement 4.6% des espèces sont menacées d'extinctions, mais 54% (153 espèces) risquent de perdre plus 80% de leur habitat initial. Les résultats de monitoring des changements de végétation dans le passé montrent que les plantes peuvent réagir rapidement au réchauffement climatique si la compétition est faible. Dans les prairies subalpines, les espèces déjà présentes limitent certainement l'arrivée de nouvelles espèces par effet de compétition. Les résultats de simulation pour le futur prédisent le début d'extinctions massives dans les Préalpes à partir de 2040, au plus tard en 2080. Mon travail démontre aussi l'importance d'études régionales à échelle fine pour évaluer l'impact des changements climatiques sur la végétation, en intégrant des variables plus directes. En effet, les études à échelle continentale ne tiennent pas compte des micro-refuges, des extinctions locales ni des pertes de connectivité entre populations locales. Malgré cela, la migration des plantes de basses altitudes reste difficile à prédire à l'échelle locale sans modélisation plus globale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecological parameters vary in space, and the resulting heterogeneity of selective forces can drive adaptive population divergence. Clinal variation represents a classical model to study the interplay of gene flow and selection in the dynamics of this local adaptation process. Although geographic variation in phenotypic traits in discrete populations could be remainders of past adaptation, maintenance of adaptive clinal variation requires recurrent selection. Clinal variation in genetically determined traits is generally attributed to adaptation of different genotypes to local conditions along an environmental gradient, although it can as well arise from neutral processes. Here, we investigated whether selection accounts for the strong clinal variation observed in a highly heritable pheomelanin-based color trait in the European barn owl by comparing spatial differentiation of color and of neutral genes among populations. Barn owl's coloration varies continuously from white in southwestern Europe to reddish-brown in northeastern Europe. A very low differentiation at neutral genetic markers suggests that substantial gene flow occurs among populations. The persistence of pronounced color differentiation despite this strong gene flow is consistent with the hypothesis that selection is the primary force maintaining color variation among European populations. Therefore, the color cline is most likely the result of local adaptation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mississippi Valley-type (MVT) Pb-Zn ore district at Mezica is hosted by Middle to Upper Triassic platform carbonate rocks in the Northern Karavanke/Drau Range geotectonic units of the Eastern Alps, northeastern Slovenia. The mineralization at Mezica covers an area of 64 km(2) with more than 350 orebodies and numerous galena and sphalerite occurrences, which formed epigenetically, both conformable and discordant to bedding. While knowledge on the style of mineralization has grown considerably, the origin of discordant mineralization is still debated. Sulfur stable isotope analyses of 149 sulfide samples from the different types of orebodies provide new insights on the genesis of these mineralizations and their relationship. Over the whole mining district, sphalerite and galena have delta(34)S values in the range of -24.7 to -1.5% VCDT (-13.5 +/- 5.0%) and -24.7 to -1.4% (-10.7 +/- 5.9%), respectively. These values are in the range of the main MVT deposits of the Drau Range. All sulfide delta(34)S values are negative within a broad range, with delta(34)S(pyrite) < delta(34)S(sphalerite) < delta(34)S(galena) for both conformable and discordant orebodies, indicating isotopically heterogeneous H(2)S in the ore-forming fluids and precipitation of the sulfides at thermodynamic disequilibrium. This clearly supports that the main sulfide sulfur originates from bacterially mediated reduction (BSR) of Middle to Upper Triassic seawater sulfate or evaporite sulfate. Thermochemical sulfate reduction (TSR) by organic compounds contributed a minor amount of (34)S-enriched H(2)S to the ore fluid. The variations of delta(34)S values of galena and coarse-grained sphalerite at orefield scale are generally larger than the differences observed in single hand specimens. The progressively more negative delta(34)S values with time along the different sphalerite generations are consistent with mixing of different H(2)S sources, with a decreasing contribution of H(2)S from regional TSR, and an increase from a local H(2)S reservoir produced by BSR (i.e., sedimentary biogenic pyrite, organo-sulfur compounds). Galena in discordant ore (-11.9 to -1.7%; -7.0 +/- 2.7%, n=12) tends to be depleted in (34)S compared with conformable ore (-24.7 to -2.8%, -11.7 +/- 6.2%, n=39). A similar trend is observed from fine-crystalline sphalerite I to coarse open-space filling sphalerite II. Some variation of the sulfide delta(34)S values is attributed to the inherent variability of bacterial sulfate reduction, including metabolic recycling in a locally partially closed system and contribution of H(2)S from hydrolysis of biogenic pyrite and thermal cracking of organo-sulfur compounds. The results suggest that the conformable orebodies originated by mixing of hydrothermal saline metal-rich fluid with H(2)S-rich pore waters during late burial diagenesis, while the discordant orebodies formed by mobilization of the earlier conformable mineralization.