272 resultados para Liver glycogen
Resumo:
HYPOTHESIS: Liver transplantation results in hepatic denervation. This may produce alterations of liver energy and substrate metabolism, which may contribute to weight gain after liver transplantation. DESIGN: Prospective clinical study. SETTING: Liver transplantation clinics in a university hospital. PATIENTS: Seven nondiabetic patients with cirrhosis were recruited while on a waiting list for liver transplantation. Seven healthy subjects were recruited as controls. INTERVENTION: Orthotopic liver transplantation. MAIN OUTCOME MEASURES: Evaluation of energy and substrate metabolism after ingestion of a glucose load with indirect calorimetry was performed before, 2 to 6 weeks after, and 5 to 19 months after transplantation. Whole-body glucose oxidation and storage and glucose-induced thermogenesis were calculated. RESULTS: Patients with cirrhosis had modestly elevated resting energy expenditure and normal glucose-induced thermogenesis and postprandial glucose oxidation and storage. These measures remained unchanged after liver transplantation despite a significant increase in postprandial glycemia. Patients, however, gained an average of 3 kg of body weight after 5 to 19 months compared with their weight before transplantation. CONCLUSION: Liver denervation secondary to transplantation does not lead to alterations of energy metabolism after ingestion of a glucose load.
Resumo:
Both experimental and clinical data show evidence of a correlation between elevated blood levels of carcinoembryonic antigen (CEA) and the development of liver metastases from colorectal carcinomas. However, a cause-effect relationship between these two observations has not been demonstrated. For this reason, we developed a new experimental model to evaluate the possible role of circulating CEA in the facilitation of liver metastases. A CEA-negative subclone from the human colon carcinoma cell line CO115 was transfected either with CEA-cDNA truncated at its 3' end by the deletion of 78 base pairs leading to the synthesis of a secreted form of CEA or with a full-length CEA-cDNA leading to the synthesis of the entire CEA molecule linked to the cell surface by a GPI anchor. Transfectants were selected either for their high CEA secretion (clone CO115-2C2 secreting up to 13 microg CEA per 10(6) cells within 72 h) or for their high CEA membrane expression (clone CO115-5F12 expressing up to 1 x 10(6) CEA molecules per cell). When grafted subcutaneously, CO115-2C2 cells gave rise to circulating CEA levels that were directly related to the tumour volume (from 100 to 1000 ng ml(-1) for tumours ranging from 100 to 1000 mm3), whereas no circulating CEA was detectable in CO115 and CO115-5F12 tumour-bearing mice. Three series of nude mice bearing a subcutaneous xenograft from either clone CO115-2C2 or the CO115-5F12 transfectant, or an untransfected CO115 xenograft, were further challenged for induction of experimental liver metastases by intrasplenic injection of three different CEA-expressing human colorectal carcinoma cell lines (LoVo, LS174T or CO112). The number and size of the liver metastases were shown to be independent of the circulating CEA levels induced by the subcutaneous CEA secreting clone (CO115-2C2), but they were directly related to the metastatic properties of the intrasplenically injected tumour cells.
Resumo:
Undifferentiated sarcoma of the liver is a rare primary tumor of childhood: only about 150 cases have been reported in the literature. CASE-REPORT: A 10 year-old girl was admitted because of diarrhea and weight loss. Sonography, then CT-scan and MRI showed a large tumor of the liver. COMMENTS: In the differential diagnosis of primary liver tumors in children, one should think about undifferentiated sarcoma of the liver, especially if imaging shows haemorrhagic foci and if sonography and CT/MRI display a discordant appearance. Survival has improved in the last decade due to agressive surgery and intensive chemotherapy.
Resumo:
PURPOSE: To report a case of conjunctival intraepithelial neoplasia in a patient treated with tacrolimus after liver transplantation for hepatic carcinoma. METHODS: Description of the initial clinical presentation of a patient, tumor management, and 15-month follow-up. RESULTS: A 70-year-old man presented with a conjunctival intraepithelial neoplasia that developed on the site of a preexisting pterygium. After total surgical removal and additional application of mitomycin, local tumor control was achieved. CONCLUSIONS: We describe a case of intraepithelial conjunctival neoplasia in a patient treated with systemic tacrolimus. Local tumor control was achieved at 15 months after appropriate surgical management.
Resumo:
Liver-stage antigen 3 (LSA-3) is a new vaccine candidate that can induce protection against Plasmodium falciparum sporozoite challenge. Using a series of long synthetic peptides (LSP) encompassing most of the 210-kDa LSA-3 protein, a study of the antigenicity of this protein was carried out in 203 inhabitants from the villages of Dielmo (n = 143) and Ndiop (n = 60) in Senegal (the level of malaria transmission differs in these two villages). Lymphocyte responses to each individual LSA-3 peptide were recorded, some at high prevalences (up to 43%). Antibodies were also detected to each of the 20 peptides, many at high prevalence (up to 84% of responders), and were directed to both nonrepeat and repeat regions. Immune responses to LSA-3 were detectable even in individuals of less than 5 years of age and increased with age and hence exposure to malaria, although they were not directly related to the level of malaria transmission. Thus, several valuable T- and B-cell epitopes were characterized all along the LSA-3 protein, supporting the antigenicity of this P. falciparum vaccine candidate. Finally, antibodies specific for peptide LSP10 located in a nonrepeat region of LSA-3 were found significantly associated with a lower risk of malaria attack over 1 year of daily clinical follow-up in children between the ages of 7 and 15 years, but not in older individuals.
Resumo:
BACKGROUND: Sunitinib (SU) is a multitargeted tyrosine kinase inhibitor with antitumor and antiangiogenic activity. The objective of this trial was to demonstrate antitumor activity of continuous SU treatment in patients with hepatocellular carcinoma (HCC). PATIENTS AND METHODS: Key eligibility criteria included unresectable or metastatic HCC, no prior systemic anticancer treatment, measurable disease, and Child-Pugh class A or mild Child-Pugh class B liver dysfunction. Patients received 37.5 mg SU daily until progression or unacceptable toxicity. The primary endpoint was progression-free survival at 12 weeks (PFS12). RESULTS: Forty-five patients were enrolled. The median age was 63 years; 89% had Child-Pugh class A disease and 47% had distant metastases. PFS12 was rated successful in 15 patients (33%; 95% confidence interval, 20%-47%). Over the whole trial period, one complete response and a 40% rate of stable disease as the best response were achieved. The median PFS duration, disease stabilization duration, time to progression, and overall survival time were 1.5, 2.9, 1.5, and 9.3 months, respectively. Grade 3 and 4 adverse events were infrequent. None of the 33 deaths were considered drug related. CONCLUSION: Continuous SU treatment with 37.5 mg daily is feasible and has moderate activity in patients with advanced HCC and mild to moderately impaired liver dysfunction. Under this trial design (>13 PFS12 successes), the therapy is considered promising. This is the first trial describing the clinical effects of continuous dosing of SU in HCC patients on a schedule that is used in an ongoing, randomized, phase III trial in comparison with the current treatment standard, sorafenib (ClinicalTrials.gov identifier, NCT00699374).
Resumo:
Liver fatty-acid-binding protein (L-FABP) is a cytoplasmic polypeptide that binds with strong affinity especially to long-chain fatty acids (LCFAs). It is highly expressed in both the liver and small intestine, where it is thought to have an essential role in the control of the cellular fatty acid (FA) flux. Because expression of the gene encoding L-FABP is increased by both fibrate hypolipidaemic drugs and LCFAs, it seems to be under the control of transcription factors, termed peroxisome-proliferator-activated receptors (PPARs), activated by fibrate or FAs. However, the precise molecular mechanism by which these regulations take place remain to be fully substantiated. Using transfection assays, we found that the different PPAR subtypes (alpha, gamma and delta) are able to mediate the up-regulation by FAs of the gene encoding L-FABP in vitro. Through analysis of LCFA- and fibrate-mediated effects on L-FABP mRNA levels in wild-type and PPARalpha-null mice, we have found that PPARalpha in the intestine does not constitute a dominant regulator of L-FABP gene expression, in contrast with what is known in the liver. Only the PPARdelta/alpha agonist GW2433 is able to up-regulate the gene encoding L-FABP in the intestine of PPARalpha-null mice. These findings demonstrate that PPARdelta can act as a fibrate/FA-activated receptor in tissues in which it is highly expressed and that L-FABP is a PPARdelta target gene in the small intestine. We propose that PPARdelta contributes to metabolic adaptation of the small intestine to changes in the lipid content of the diet.
Resumo:
Rotation-mediated aggregate cultures of foetal rat liver cells were prepared and grown in a chemically defined medium. Their capacity for cellular organisation and maturation was studied over a culture period of 3 wk by using both morphologic and biochemical criteria. It was found that within each aggregate, distinct liver cell types were present and attained their normal, differentiated phenotype. Parenchymal cells formed small acini with a central lumen. Within the first 2 wk in culture, albumin and ferritin mRNA levels were maintained, while the alpha-fetoprotein mRNA levels decreased, and tyrosine aminotransferase (TAT) gene expression increased. No significant response to glucocorticoids was observed in early cultures, whereas after 3 wk a marked increase in TAT mRNA levels was elicited by dexamethasone and glucagon (additive stimulatory effects). The results show that foetal rat liver cells cultured in a chemically defined medium are able to rearrange themselves into histotypic structures, and display a developmental pattern of gene expression comparable to that of perinatal rat liver in vivo. This culture system offers therefore a useful model to study the development and function of liver cells.
Resumo:
BACKGROUND/AIMS: The Peroxisome Proliferator-Activated Receptor (PPAR) alpha belongs to the superfamily of Nuclear Receptors and plays an important role in numerous cellular processes, including lipid metabolism. It is known that PPARalpha also has an anti-inflammatory effect, which is mainly achieved by down-regulating pro-inflammatory genes. The objective of this study was to further characterize the role of PPARalpha in inflammatory gene regulation in liver. RESULTS: According to Affymetrix micro-array analysis, the expression of various inflammatory genes in liver was decreased by treatment of mice with the synthetic PPARalpha agonist Wy14643 in a PPARalpha-dependent manner. In contrast, expression of Interleukin-1 receptor antagonist (IL-1ra), which was acutely stimulated by LPS treatment, was induced by PPARalpha. Up-regulation of IL-1ra by LPS was lower in PPARalpha -/- mice compared to Wt mice. Transactivation and chromatin immunoprecipitation studies identified IL-1ra as a direct positive target gene of PPARalpha with a functional PPRE present in the promoter. Up-regulation of IL-1ra by PPARalpha was conserved in human HepG2 hepatoma cells and the human monocyte/macrophage THP-1 cell line. CONCLUSIONS: In addition to down-regulating expression of pro-inflammatory genes, PPARalpha suppresses the inflammatory response by direct up-regulation of genes with anti-inflammatory properties.
Resumo:
Although glycogen (Glyc) is the main carbohydrate storage component, the role of Glyc in the brain during prolonged wakefulness is not clear. The aim of this study was to determine brain Glyc concentration ([]) and turnover time (tau) in euglycemic conscious and undisturbed rats, compared to rats maintained awake for 5h. To measure the metabolism of [1-(13)C]-labeled Glc into Glyc, 23 rats received a [1-(13)C]-labeled Glc solution as drink (10% weight per volume in tap water) ad libitum as their sole source of exogenous carbon for a "labeling period" of either 5h (n=13), 24h (n=5) or 48 h (n=5). Six of the rats labeled for 5h were continuously maintained awake by acoustic, tactile and olfactory stimuli during the labeling period, which resulted in slightly elevated corticosterone levels. Brain [Glyc] measured biochemically after focused microwave fixation in the rats maintained awake (3.9+/-0.2 micromol/g, n=6) was not significantly different from that of the control group (4.0+/-0.1 micromol/g, n=7; t-test, P>0.5). To account for potential variations in plasma Glc isotopic enrichment (IE), Glyc IE was normalized by N-acetyl-aspartate (NAA) IE. A simple mathematical model was developed to derive brain Glyc turnover time as 5.3h with a fit error of 3.2h and NAA turnover time as 15.6h with a fit error of 6.5h, in the control rats. A faster tau(Glyc) (2.9h with a fit error of 1.2h) was estimated in the rats maintained awake for 5h. In conclusion, 5h of prolonged wakefulness mainly activates glycogen metabolism, but has minimal effect on brain [Glyc].
Resumo:
Impaired glucose tolerance or diabetes mellitus are frequent complications after organ transplantation, and are usually attributed to glucocorticoid and immunosuppressive treatments. Liver transplantation results in total hepatic denervation which may also affect glucoregulation. We therefore evaluated postprandial glucose metabolism in a group of patients with liver cirrhosis before and after orthotopic liver transplantation. Seven patients with liver cirrhosis of various etiologies, 6 patients having received a kidney transplant, and 6 healthy subjects were studied. Their glucose metabolism was evaluated in the basal state and over 4 hours after ingestion of a glucose load with 6.6 (2) H glucose dilution analysis. The patients with liver cirrhosis were studied before, and again 4 weeks (range 2-6) and 38 weeks (range 20-76, n=6) after orthotopic liver transplantation. Basal glucose metabolism was similar in liver and kidney transplant recipients. Impaired glucose tolerance was present in both groups, but postprandial hyperglycemia was exaggerated and lasted longer in liver transplant patients. Postprandial insulinemia was lower in liver transplant recipients, while C-peptide concentrations were comparable to those of kidney transplant recipients, indicating increased insulin clearance. Glucose turnover was not altered in both groups of patients during the initial 3 hours after glucose ingestion, but was higher in liver transplant early after transplantation during the fourth hour. Postprandial hyperglycemia remained unchanged in liver transplant recipients 38 weeks after liver transplantation, despite substantial reduction of immunosuppressive and glucocorticoid doses. We conclude that liver transplant recipients have severe postprandial hyperglycemia which can be attributed to insulinopenia (secondary, at least in part, to increased insulin clearance) and a late increased glucose turnover. These changes may be secondary to hepatic denervation.
Les hépatopathies auto-immunes et leurs traitements [Auto-immune liver diseases and their treatment]
Resumo:
There are three main types of auto-immune liver disease, auto-immune hepatitis, primary biliary cirrhosis and primary sclerosing cholangitis. In the case of auto-immune hepatitis, prednisone therapy, with or without azathioprine, can improve quality of life and halt progression to cirrhosis. If there is no response or if the therapy is poorly tolerated, mycophenolate mofetil or cyclosporin should be considered. Ursodeoxycholic acid (UDCA), at a dosage of 13 to 15 mg/kg/day slows the progression of fibrosis in patients with primary biliary cirrhosis. Pruritus may be treated with cholestyramine, rifampicin or opiate antagonists. Ursodeoxycholic acid at a dosage of 20 to 30 mg/kg/day will slow the evolution of fibrosis.
Resumo:
Human Fas ligand (L) (CD95L) and tumor necrosis factor (TNF)-alpha undergo metalloproteinase-mediated proteolytic processing in their extracellular domains resulting in the release of soluble trimeric ligands (soluble [s]FasL, sTNF-alpha) which, in the case of sFasL, is thought to be implicated in diseases such as hepatitis and AIDS. Here we show that the processing of sFasL occurs between Ser126 and Leu127. The apoptotic-inducing capacity of naturally processed sFasL was reduced by >1,000-fold compared with membrane-bound FasL, and injection of high doses of recombinant sFasL in mice did not induce liver failure. However, soluble FasL retained its capacity to interact with Fas, and restoration of its cytotoxic activity was achieved both in vitro and in vivo with the addition of cross-linking antibodies. Similarly, the marginal apoptotic activity of recombinant soluble TNF-related apoptosis-inducing ligand (sTRAIL), another member of the TNF ligand family, was greatly increased upon cross-linking. These results indicate that the mere trimerization of the Fas and TRAIL receptors may not be sufficient to trigger death signals. Thus, the observation that sFasL is less cytotoxic than membrane-bound FasL may explain why in certain types of cancer, systemic tissue damage is not detected, even though the levels of circulating sFasL are high.