400 resultados para LARGE GRANULAR LYMPHOCYTE LEUKEMIA
Resumo:
In this paper we present a prototype of a control flow for an a posteriori drug dose adaptation for Chronic Myelogenous Leukemia (CML) patients. The control flow is modeled using Timed Automata extended with Tasks (TAT) model. The feedback loop of the control flow includes the decision-making process for drug dose adaptation. This is based on the outputs of the body response model represented by the Support Vector Machine (SVM) algorithm for drug concentration prediction. The decision is further checked for conformity with the dose level rules of a medical guideline. We also have developed an automatic code synthesizer for the icycom platform as an extension of the TIMES tool.
Resumo:
BACKGROUND: Invasive fungal infections (IFIs) are life-threatening complications in patients with hemato-oncological malignancies, and early diagnosis is crucial for outcome. The compound 1,3-β-D-glucan (BG), a cell wall component of most fungal species, can be detected in blood during IFI. Four commercial BG antigenemia assays are available (Fungitell, Fungitec-G, Wako, and Maruha). This meta-analysis from the Third European Conference on Infections in Leukemia (ECIL-3) assessed the performance of BG assays for the diagnosis of IFI in hemato-oncological patients. METHODS: Studies reporting the performance of BG antigenemia assays for the diagnosis of IFI (European Organization for Research and Treatment of Cancer and Mycoses Study Group criteria) in hemato-oncological patients were identified. The analysis was focused on high-quality cohort studies with exclusion of case-control studies. Meta-analysis was performed by conventional meta-analytical pooling and bivariate analysis. RESULTS: Six cohort studies were included (1771 adult patients with 414 IFIs of which 215 were proven or probable). Similar performance was observed among the different BG assays. For the cutoff recommended by the manufacturer, the diagnostic performance of the BG assay in proven or probable IFI was better with 2 consecutive positive test results (diagnostic odds ratio for 2 consecutive vs one single positive results, 111.8 [95% confidence interval {CI}, 38.6-324.1] vs 16.3 [95% CI, 6.5-40.8], respectively; heterogeneity index for 2 consecutive vs one single positive results, 0% vs 72.6%, respectively). For 2 consecutive tests, sensitivity and specificity were 49.6% (95% CI, 34.0%-65.3%) and 98.9% (95% CI, 97.4%-99.5%), respectively. Estimated positive and negative predictive values for an IFI prevalence of 10% were 83.5% and 94.6%, respectively. CONCLUSIONS: Different BG assays have similar accuracy for the diagnosis of IFI in hemato-oncological patients. Two consecutive positive antigenemia assays have very high specificity, positive predictive value, and negative predictive value. Because sensitivity is low, the test needs to be combined with clinical, radiological, and microbiological findings.
Resumo:
Mutations of the Fms-like tyrosine kinase 3 (FLT3) can be detected in a significant number of acute myeloid leukemias (AML). Seventy-five cases of acute myeloid leukemia were evaluated for FLT3-internal tandem duplications (ITD) by polymerase chain reaction. Paraffin-embedded formalin-fixed trephine biopsies of these cases were evaluated for expression of phosphorylated signal transducer and activator of transcription 1 (pSTAT1), pSTAT3, and pSTAT5. Specific expression of pSTAT5 was proven in leukemic blasts in situ by double staining with a blast-specific marker. Expression of pSTAT5 in > or =1% of blasts was highly predictive of FLT3-ITD. Neither expression of pSTAT1 nor pSTAT3 were associated with FLT3 mutations. Altogether we conclude that pSTAT5 expression can precisely be assessed by immunohistochemistry in routinely processed bone marrow trephines, STAT5 is highly likely the preferred second messenger of FLT3-mediated signaling in AML, and expression of pSTAT5 is predictive of FLT3-ITD.
Resumo:
Abstract Long term contact with pathogens induces an adaptive immune response, which is mainly mediated by T and B cells. Antigen-induced activation of T and B cells is an important event, since it facilitates the transition of harmless, low proliferative lymphocytes into powerful and fast expanding cells, which can, if deregulated, be extremely harmful and dangerous for the human body. One of the most important events during lymphocyte activation is the induction of NF-xB activity, a transcription factor that controls not only cytokine secretion, but also lymphocyte proliferation and survival. Recent discoveries identified the CBM complex as the central regulator of NF-xB activity in lymphocytes. The CBM complex consists of the three proteins Carma1, Bcl10 and Malt1, in which Carma1 serves as recruitment platform of the complex and Bcl10 as an adaptor to recruit Malt1 to this platform. But exactly how Malt1 activates NF-x6 is still poorly understood. We discovered that Malt1 is a protease, which cleaves its interaction partner Bcl10 upon T and B cell stimulation. We mapped the Bcl10 cleavage site by single point mutations as well as by a proteomics approach, and used this knowledge to design a fluorogenic Malt1 reporter peptide. With this tool were we able to the first time demonstrate proteolytic activity of Malt1 in vitro, using recombinant Malt1, and in stimulated T cells. Based on similarities to a metacaspase, we designed a Malt1inhibitor, which allowed unto investigate the role of Malt1 activity in T cells. Malt1-inhibited T cells showed a clear defect in NF-xB activity, resulting in impaired IL-2 cytokine secretion levels. We also found a new unexpected role for Bcl10; the blockade of Bcl10 cleavage resulted in a strongly impaired capability of stimulated T cells to adhere to the extracellular matrix protein fibronectin. Because of the central position of the C8M complex, it is not surprising that different lymphomas show abnormal expressions of Carma1, Bcl10 and Malt1. We investigated the role of Malt1 proteolytic activity in the most aggressive subtype of diffuse large B cell lymphomas called ABC, which was described to depend on the expression of Carmal, and frequently carries oncogenic Carmal mutations. We found constitutive high Malt1 activity in all tested ABC cell lines visualized by detection of cleavage products of Malt1 substrates. With the use of the Malt1-inhibitor, we could demonstrate that Malt-inhibition in those cells had two effects. First, the tumor cell proliferation was decreased, most likely because of lower autocrine stimulation by cytokines. Second, we could sensitize the ABC cells towards cell death, which is most likely caused by reduced expression of prosurvival NF-xB target gens. Taken together, we identified Malt1 as a protease in T and B cells, demonstrated its importance for NF-xB signaling and its deregulation in a subtype of diffuse large B cell lymphoma. This could allow the development of a new generation of immunomodulatory and anti-cancer drugs. Résumé Un contact prolongé avec des pathogènes provoque une réponse immunitaire adaptative qui dépend principalement des cellules T et 8. L'activation des lymphocytes T et B, suite à la reconnaissance d'un antigène, est un événement important puisqu'il facilite la transition pour ces cellules d'un état de prolifération limitée et inoffensive à une prolifération soutenue et rapide. Lorsque ce mécanisme est déréglé ìl peut devenir extrêmement nuisible et dangereux pour le corps humain. Un des événement les plus importants lors de l'activation des lymphocytes est l'induction du facteur de transcription NFxB, qui organise la sécrétion de cytokines ainsi que la prolifération et la survie des lymphocytes. Le complexe CBM, composé des trois protéines Carmai, Bc110 et Malt1, a été récemment identifié comme un régulateur central de l'activité de NF-x8 dans les lymphocytes. Carma1 sert de plateforme de recrutement pour ce complexe alors que Bc110 permet d'amener Malt1 dans cette plateforme. Cependant, le rôle exact de Malt1 dans l'activation de NF-tcB reste encore mal compris. Nous avons découvert que Malt1 est une protéase qui clive son partenaire d'interaction BcI10 après stimulation des cellules T et B. Nous avons identifié le site de clivage de BcI10 par une série de mutations ponctuelles ainsi que par une approche protéomique, ce qui nous a permis de fabriquer un peptide reporteur fluorogénique pour mesurer l'activité de Malt1. Grâce à cet outil, nous avons démontré pour la première fois l'activité protéolytique de Malt1 in vitro à l'aide de protéines Malt1 recombinantes ainsi que dans des cellules T stimulées. La ressemblance de Malt1 avec une métacaspase nous a permis de synthétiser un inhibiteur de Malt1 et d'étudier ainsi le rôle de l'activité de Malt1 dans les cellules T. L'inhibition de Malt1 dans les cellules T a révélé un net défaut de l'activité de NF-x8, ayant pour effet une sécrétion réduite de la cytokine IL-2. Nous avons également découvert un rôle inattendu pour Bcl10: en effet, bloquer le clivage de Bcl10 diminue fortement la capacité d'adhésion des cellules T stimulées à la protéine fïbronectine, un composant de la matrice extracellulaire. En raison de la position centrale du complexe CBM, il n'est pas étonnant que le niveau d'expression de Carmai, Bcl10 et Malt1 soit anormal dans plusieurs types de lymphomes. Nous avons examiné le rôle de l'activité protéolytique de Malt1 dans le sous-type le plus agressif des lymphomes B diffus à grandes cellules, appelé sous-type ABC. Ce sous-type de lymphomes dépend de l'expression de Carmai et présente souvent des mutations oncogéniques de Carma1. Nous avons démontré que l'activité de Malt1 était constitutivement élevée dans toutes les lignées cellulaires de type ABC testées, en mettant en évidence la présence de produits de clivage de différents substrats de Malt1. Enfin, l'utilisation de l'inhibiteur de Malt1 nous a permis de démontrer que l'inhibition de Malt1 avait deux effets. Premièrement, une diminution de la prolifération des cellules tumorales, probablement dûe à leur stimulation autocrine par des cytokines fortement réduite. Deuxièmement, une sensibilisation des cellules de type ABC à ia mort cellulaire, vraisemblablement causée par l'expression diminuée de gènes de survie dépendants de NF-tcB. En résumé, nous avons identifié Malt1 comme une protéase dans les cellules T et B, nous avons mis en évidence son importance pour l'activation de NF-xB ainsi que les conséquences du dérèglement de l'activité de Malt1 dans un sous-type de lymphome B diffus à larges cellules. Notre étude ouvre ainsi la voie au développement d'une nouvelle génération de médicaments immunomodulateurs et anti-cancéreux.
Resumo:
The authors devised a cytotoxic assay based on cytofluorometric analysis of target surface markers in order to compare lysis exerted in vitro by cytotoxic T lymphocytes (CTLs) on different cell subsets in the context of a single lymphoid target cell population. Using this assay, the authors evaluated when oncorna virus-infected lymphocytes become a suitable target for virus-specific T cell effectors. A lymphocyte population from Moloney-murine leukaemia virus (M-MuLV)-infected (carrier) mice, in which the proliferation of selective V beta T-cell receptor (TCR) families was induced in response to Mlsa encoded antigens, was utilized as a target. The authors observed that a virus-specific T cell clone exerted lytic activity preferentially against activated cell subsets. Moreover, virus-specific CTLs generated in mixed leucocyte tumour cell cultures (MLTC) were also able to impair the concomitant anti-Mlsa response of lymphocytes from M-MuLV carrier mice. It was found that the proliferative status of oncorna virus-infected target cells played an important role in limiting the in vitro efficacy of the immune response, and it is speculated that this phenomenon might represent an in vivo escape mechanism from immunosurveillance.
Resumo:
Recognition by CD8+ cytotoxic T lymphocytes (CTLs) of antigenic peptides bound to major histocompatibility class (MHC) I molecules on target cells leads to sustained calcium mobilization and CTL degranulation resulting in perforin-dependent killing. We report that beta1 and beta3 integrin-mediated adhesion to extracellular matrix proteins on target cells and/or surfaces dramatically promotes CTL degranulation. CTLs, when adhered to fibronectin but not CTL in suspension, efficiently degranulate upon exposure to soluble MHC.peptide complexes, even monomeric ones. This adhesion induces recruitment and activation of the focal adhesion kinase Pyk2, the cytoskeleton linker paxillin, and the Src kinases Lck and Fyn in the contact site. The T cell receptor, by association with Pyk2, becomes part of this adhesion-induced activation cluster, which greatly increases its signaling.
Resumo:
Objectives: Several population pharmacokinetic (PPK) and pharmacokinetic-pharmacodynamic (PK-PD) analyses have been performed with the anticancer drug imatinib. Inspired by the approach of meta-analysis, we aimed to compare and combine results from published studies in a useful way - in particular for improving the clinical interpretation of imatinib concentration measurements in the scope of therapeutic drug monitoring (TDM). Methods: Original PPK analyses and PK-PD studies (PK surrogate: trough concentration Cmin; PD outcomes: optimal early response and specific adverse events) were searched systematically on MEDLINE. From each identified PPK model, a predicted concentration distribution under standard dosage was derived through 1000 simulations (NONMEM), after standardizing model parameters to common covariates. A "reference range" was calculated from pooled simulated concentrations in a semi-quantitative approach (without specific weighting) over the whole dosing interval. Meta-regression summarized relationships between Cmin and optimal/suboptimal early treatment response. Results: 9 PPK models and 6 relevant PK-PD reports in CML patients were identified. Model-based predicted median Cmin ranged from 555 to 1388 ng/ml (grand median: 870 ng/ml and inter-quartile range: 520-1390 ng/ml). The probability to achieve optimal early response was predicted to increase from 60 to 85% from 520 to 1390 ng/ml across PK-PD studies (odds ratio for doubling Cmin: 2.7). Reporting of specific adverse events was too heterogeneous to perform a regression analysis. The general frequency of anemia, rash and fluid retention increased however consistently with Cmin, but less than response probability. Conclusions: Predicted drug exposure may differ substantially between various PPK analyses. In this review, heterogeneity was mainly attributed to 2 "outlying" models. The established reference range seems to cover the range where both good efficacy and acceptable tolerance are expected for most patients. TDM guided dose adjustment appears therefore justified for imatinib in CML patients. Its usefulness remains now to be prospectively validated in a randomized trial.
Resumo:
BACKGROUND: Superinfection with drug resistant HIV strains could potentially contribute to compromised therapy in patients initially infected with drug-sensitive virus and receiving antiretroviral therapy. To investigate the importance of this potential route to drug resistance, we developed a bioinformatics pipeline to detect superinfection from routinely collected genotyping data, and assessed whether superinfection contributed to increased drug resistance in a large European cohort of viremic, drug treated patients. METHODS: We used sequence data from routine genotypic tests spanning the protease and partial reverse transcriptase regions in the Virolab and EuResist databases that collated data from five European countries. Superinfection was indicated when sequences of a patient failed to cluster together in phylogenetic trees constructed with selected sets of control sequences. A subset of the indicated cases was validated by re-sequencing pol and env regions from the original samples. RESULTS: 4425 patients had at least two sequences in the database, with a total of 13816 distinct sequence entries (of which 86% belonged to subtype B). We identified 107 patients with phylogenetic evidence for superinfection. In 14 of these cases, we analyzed newly amplified sequences from the original samples for validation purposes: only 2 cases were verified as superinfections in the repeated analyses, the other 12 cases turned out to involve sample or sequence misidentification. Resistance to drugs used at the time of strain replacement did not change in these two patients. A third case could not be validated by re-sequencing, but was supported as superinfection by an intermediate sequence with high degenerate base pair count within the time frame of strain switching. Drug resistance increased in this single patient. CONCLUSIONS: Routine genotyping data are informative for the detection of HIV superinfection; however, most cases of non-monophyletic clustering in patient phylogenies arise from sample or sequence mix-up rather than from superinfection, which emphasizes the importance of validation. Non-transient superinfection was rare in our mainly treatment experienced cohort, and we found a single case of possible transmitted drug resistance by this route. We therefore conclude that in our large cohort, superinfection with drug resistant HIV did not compromise the efficiency of antiretroviral treatment.
Resumo:
Mycophenolic acid, a selective inhibitor of the de novo synthesis of guanosine nucleotides in T and B lymphocytes, has been proposed to inhibit human immunodeficiency virus (HIV) replication in vitro by depleting the substrate (guanosine nucleotides) for reverse transcriptase. Here we show that mycophenolic acid induced apoptosis and cell death in a large proportion of activated CD4+ T cells, thus indicating that it may inhibit HIV infection in vitro by both virological mechanisms and immunological mechanisms (depletion of the pool of activated CD4+ T lymphocytes). Administration of mycophenolate mophetil, the ester derivate of mycophenolic acid, to HIV-infected subjects treated with anti-retroviral therapy and with undetectable viremia resulted in the reduction of the number of dividing CD4 + and CD8+ T cells and in the inhibition of virus isolation from purified CD4+ T-cell populations. Based on these results, the potential use of mycophenolate mophetil in the treatment of HIV infection deserves further investigation in controlled clinical trials.
Resumo:
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.
Resumo:
In this paper we included a very broad representation of grass family diversity (84% of tribes and 42% of genera). Phylogenetic inference was based on three plastid DNA regions rbcL, matK and trnL-F, using maximum parsimony and Bayesian methods. Our results resolved most of the subfamily relationships within the major clades (BEP and PACCMAD), which had previously been unclear, such as, among others the: (i) BEP and PACCMAD sister relationship, (ii) composition of clades and the sister-relationship of Ehrhartoideae and Bambusoideae + Pooideae, (iii) paraphyly of tribe Bambuseae, (iv) position of Gynerium as sister to Panicoideae, (v) phylogenetic position of Micrairoideae. With the presence of a relatively large amount of missing data, we were able to increase taxon sampling substantially in our analyses from 107 to 295 taxa. However, bootstrap support and to a lesser extent Bayesian inference posterior probabilities were generally lower in analyses involving missing data than those not including them. We produced a fully resolved phylogenetic summary tree for the grass family at subfamily level and indicated the most likely relationships of all included tribes in our analysis.
Resumo:
Background: Natural Killer (NK) cells are thought to protect from residual leukemic cells in patients receiving stem cell transplantation. However, multiple retrospective analyses of patient data have yielded conflicting conclusions regarding a putative role of NK cells and the essential NK cell recognition events mediating a protective effect against leukemia. Further, a NK cell mediated protective effect against primary leukemia in vivo has not been shown directly.Methodology/Principal Findings: Here we addressed whether NK cells have the potential to control chronic myeloid leukemia (CML) arising based on the transplantation of BCR-ABL1 oncogene expressing primary bone marrow precursor cells into lethally irradiated recipient mice. These analyses identified missing-self recognition as the only NK cell-mediated recognition strategy, which is able to significantly protect from the development of CML disease in vivo.Conclusion: Our data provide a proof of principle that NK cells can control primary leukemic cells in vivo. Since the presence of NK cells reduced the abundance of leukemia propagating cancer stem cells, the data raise the possibility that NK cell recognition has the potential to cure CML, which may be difficult using small molecule BCR-ABL1 inhibitors. Finally, our findings validate approaches to treat leukemia using antibody-based blockade of self-specific inhibitory MHC class I receptors.
Resumo:
RESUME Introduction : La prophylaxie du système nerveux central lors d'un diagnostic de leucémie lymphoblastique aiguë de l'enfant a permis de réduire le risque de rechute mais a été associée dans certains cas à des neurotoxicités cliniques ou des anomalies radiologiques. Des moyens de prédire ces neurotoxicités font défaut, en particulier en raison de l'absence de corrélation claire entre les signes cliniques et les images radiologiques. Quelques auteurs ont suggéré que les taux de protéine basique de la myéline (MBP) mesurés dans le liquide céphalo-rachidien pouvaient avoir un intérêt dans ce contexte. Uné étude rétrospective de ces taux en relation avec des données cliniques et radiologiques est présentée dans ce travail. Matériel et Méthodes : Les taux de MBP mesurés dans le liquide céphalo-rachidien lors d'administration de chimiothérapie intrathécale, les examens cliniques neurologiques et les rapports radiologiques ont été rétrospectivement étudiés chez nos patients. Les données concernant des difficultés académiques éventuelles, ainsi que le niveau académique atteint ont été récoltées par l'intermédiaire de contacts téléphoniques réguliers organisés dans le cadre du suivi à long terme de nos patients. Résultats : Un total de 1248 dosages de MBP chez 83 patients, 381 examens neurologiques chez 34 patients et 69 rapports d'investigations neuroradiologiques chez 27 patients ont été analysés. Cinquante-deux patients ont eut au moins un taux anormal de MBP. Des anomalies radiologiques ont été décrites chez 47% de ces patients, parmi lesquels 14% ont présenté des difficultés scolaires sous une forme ou sous une autre. La proportion de patients ayant présenté des difficultés scolaires dans les groupes avec taux de MBP normal mais sans anomalies radiologiques décrites ou sans investigations radiologiques étaient respectivement de 0% et 3%, inférieurs dans tous les cas au groupe avec des taux normaux de MBP (100%, 22% and 5% respectivement). Discussion : Tout en prenant en compte les limitations dues à l'aspect rétrospectif de cette étude, nous avons conclu à une utilité limitée de ces dosages systématiques comme indicateur d'une neurotoxicité induite parle traitement dans le contexte de nos patients oncologiques. ABSTRACT Introduction : Central nervous system (CSF) prophylaxis of childhood acute lymphoblastic leukemia has dropped rates of relapses but has been associated wíth neurotoxicity and imaging abnormalities. Predictors of neurotoxícity are lacking, because of inconsistency between clinical symptoms and imaging. Some have suggested CSF Myelin Basic Protein (MBP) levels to be of potential interest. A retrospective analysis of MBP levels in correlation with clinical and radiological data is presented. Materials and Methods : MBP levels obtained at the time of intrathecals, charts, and neuroradiology reports were retrospectively analyzed. Academic achievement data were obtained from phone contacts with patients and families. Results : We retrieved 1248 dosages of MBP in 83 patients, 381 neurological exams in 34 patients and 69 neuroradiological investigations in 27 patients. Fifty-two patients had abnormal MBP levels. Radiological anomalies were present in 47% of those investigated, 14% of them having school difficulties. Proportions of patients with school difficulties in the groups with abnormal MBP levels but no radiological anomalies or with no radiological investigations were 0% and 3% respectively, which was lower than in the group of patients with normal MBP levels (100%, 22% and 5% respectively). Discussion : Notwithstanding the retrospective character of our study, we conclude that there is limited usefulness of systematic dosage of MBP as indicator of treatment-induced neurotoxicity in ALL patients.