153 resultados para Kinetic modeling
Resumo:
Tractography is a class of algorithms aiming at in vivo mapping the major neuronal pathways in the white matter from diffusion magnetic resonance imaging (MRI) data. These techniques offer a powerful tool to noninvasively investigate at the macroscopic scale the architecture of the neuronal connections of the brain. However, unfortunately, the reconstructions recovered with existing tractography algorithms are not really quantitative even though diffusion MRI is a quantitative modality by nature. As a matter of fact, several techniques have been proposed in recent years to estimate, at the voxel level, intrinsic microstructural features of the tissue, such as axonal density and diameter, by using multicompartment models. In this paper, we present a novel framework to reestablish the link between tractography and tissue microstructure. Starting from an input set of candidate fiber-tracts, which are estimated from the data using standard fiber-tracking techniques, we model the diffusion MRI signal in each voxel of the image as a linear combination of the restricted and hindered contributions generated in every location of the brain by these candidate tracts. Then, we seek for the global weight of each of them, i.e., the effective contribution or volume, such that they globally fit the measured signal at best. We demonstrate that these weights can be easily recovered by solving a global convex optimization problem and using efficient algorithms. The effectiveness of our approach has been evaluated both on a realistic phantom with known ground-truth and in vivo brain data. Results clearly demonstrate the benefits of the proposed formulation, opening new perspectives for a more quantitative and biologically plausible assessment of the structural connectivity of the brain.
Resumo:
Recent studies have pointed out a similarity between tectonics and slope tectonic-induced structures. Numerous studies have demonstrated that structures and fabrics previously interpreted as of purely geodynamical origin are instead the result of large slope deformation, and this led in the past to erroneous interpretations. Nevertheless, their limit seems not clearly defined, but it is somehow transitional. Some studies point out continuity between failures developing at surface with upper crust movements. In this contribution, the main studies which examine the link between rock structures and slope movements are reviewed. The aspects regarding model and scale of observation are discussed together with the role of pre-existing weaknesses in the rock mass. As slope failures can develop through progressive failure, structures and their changes in time and space can be recognized. Furthermore, recognition of the origin of these structures can help in avoiding misinterpretations of regional geology. This also suggests the importance of integrating different slope movement classifications based on distribution and pattern of deformation and the application of structural geology techniques. A structural geology approach in the landslide community is a tool that can greatly support the hazard quantification and related risks, because most of the physical parameters, which are used for landslide modeling, are derived from geotechnical tests or the emerging geophysical approaches.
Resumo:
Li contents [Li] and isotopic composition (delta Li-7) of mafic minerals (mainly amphibole and clinopyroxene) from the alkaline to peralkaline Ilimaussaq plutonic complex, South Greenland, track the behavior of Li and its isotopes during magmatic differentiation and final cooling of an alkaline igneous system. [Li] in amphibole increase from < 10 ppm in Caamphiboles of the least differentiated unit to >3000 ppm in Na-amphiboles of the highly evolved units. In contrast, [Li] in clinopyroxene are comparatively low (<85 ppm) and do not vary systematically with differentiation. The distribution of Li between amphibole and pyroxene is controlled by the major element composition of the minerals (Ca-rich and Na-rich, respectively) and changes in oxygen fugacity (due to Li incorporation via coupled substitution with ferric iron) during magmatic differentiation. delta(7) Li values of all minerals span a wide range from + 17 to - 8 parts per thousand, with the different intrusive units of the complex having distinct Li isotopic systematics. Amphiboles, which dominate the Li budget of whole-rocks from the inner part of the complex, have constant delta Li-7 of + 1.8 +/- 2.2 parts per thousand (2 sigma, n = 15). This value reflects a homogeneous melt reservoir and is consistent with their mantle derivation, in agreement with published O and Nd isotopic data. Clinopyroxenes of these samples are consistently lighter, with Delta Li-7(amph-cpx). as large as 8 parts per thousand and are thus not in Li isotope equilibrium. These low values probably reflect late-stage diffusion of Li into clinopyroxene during final cooling of the rocks, thus enriching the clinopyroxene in 6 Li. At the margin of the complex delta(7) Li in the syenites increases systematically, from +2 to high values of + 14 parts per thousand. This, coupled with the observed Li isotope systematics of the granitic country rocks, reflects post-magmatic open-system processes occurring during final cooling of the intrusion. Although the shape and magnitude of the Li isotope and elemental profiles through syenite and country rock are suggestive of diffusion-driven isotope fractionation, they cannot be modeled by one-dimensional diffusive transport and point to circulation of a fluid having a high 67 Li value (possibly seawater) along the chilled contact. In all, this study demonstrates that Li isotopes can be used to identify complex fluid- and diffusion-governed processes taking place during the final cooling of such rocks. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Natural selection is typically exerted at some specific life stages. If natural selection takes place before a trait can be measured, using conventional models can cause wrong inference about population parameters. When the missing data process relates to the trait of interest, a valid inference requires explicit modeling of the missing process. We propose a joint modeling approach, a shared parameter model, to account for nonrandom missing data. It consists of an animal model for the phenotypic data and a logistic model for the missing process, linked by the additive genetic effects. A Bayesian approach is taken and inference is made using integrated nested Laplace approximations. From a simulation study we find that wrongly assuming that missing data are missing at random can result in severely biased estimates of additive genetic variance. Using real data from a wild population of Swiss barn owls Tyto alba, our model indicates that the missing individuals would display large black spots; and we conclude that genes affecting this trait are already under selection before it is expressed. Our model is a tool to correctly estimate the magnitude of both natural selection and additive genetic variance.
Resumo:
Novel formulations of cationic nanoemulsions based on three different lipids were developed to strengthen the attraction of the polyanionic oligonucleotide (ODN) macromolecules to the cationic moieties on the oil nanodroplets. These formulations were developed to prolong the release of the ODN from the nanoemulsion under appropriate physiological dilutions as encountered in the eye following topical application. Increasing the concentration of the new cationic lipid exhibiting two cationic amine groups (AOA) in the emulsion from 0.05% to 0.4% did not alter markedly the particle size or zeta potential value of the blank cationic nanoemulsion. The extent of ODN association did not vary significantly when the initial concentration of ODN remained constant at 10 microM irrespective of the cationic lipid nature. However, the zeta potential value dropped consistently with the low concentrations of 0.05% and 0.1% of AOA in the emulsions suggesting that an electrostatic attraction occurred between the cationic lipids and the polyanionic ODN molecules at the o/w interface. Only the nanoemulsion prepared with N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium salts (DOTAP) remained physically stable over time. DOTAP cationic lipid nanoemulsion was the most efficient formulation capable of retaining the ODN despite the high dilution of 1:100 with simulated tear solution (STS). Less than 10% of the ODN was exchanged in contrast to 40-50% with the other cationic nanoemulsions. The in-vitro release kinetic behavior of ODN exchange with physiological anions present in the STS appears to be complex and difficult to characterize using mathematical fitting model equations. Further pharmacokinetic studies are needed to verify our kinetic assumptions and confirm the in-vitro ODN release profile from DOTAP cationic nanoemulsions.
Resumo:
In the context of the investigation of the use of automated fingerprint identification systems (AFIS) for the evaluation of fingerprint evidence, the current study presents investigations into the variability of scores from an AFIS system when fingermarks from a known donor are compared to fingerprints that are not from the same source. The ultimate goal is to propose a model, based on likelihood ratios, which allows the evaluation of mark-to-print comparisons. In particular, this model, through its use of AFIS technology, benefits from the possibility of using a large amount of data, as well as from an already built-in proximity measure, the AFIS score. More precisely, the numerator of the LR is obtained from scores issued from comparisons between impressions from the same source and showing the same minutia configuration. The denominator of the LR is obtained by extracting scores from comparisons of the questioned mark with a database of non-matching sources. This paper focuses solely on the assignment of the denominator of the LR. We refer to it by the generic term of between-finger variability. The issues addressed in this paper in relation to between-finger variability are the required sample size, the influence of the finger number and general pattern, as well as that of the number of minutiae included and their configuration on a given finger. Results show that reliable estimation of between-finger variability is feasible with 10,000 scores. These scores should come from the appropriate finger number/general pattern combination as defined by the mark. Furthermore, strategies of obtaining between-finger variability when these elements cannot be conclusively seen on the mark (and its position with respect to other marks for finger number) have been presented. These results immediately allow case-by-case estimation of the between-finger variability in an operational setting.
Resumo:
MOTIVATION: Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. RESULTS: In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. AVAILABILITY: Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.
Resumo:
Metabolic problems lead to numerous failures during clinical trials, and much effort is now devoted to developing in silico models predicting metabolic stability and metabolites. Such models are well known for cytochromes P450 and some transferases, whereas less has been done to predict the activity of human hydrolases. The present study was undertaken to develop a computational approach able to predict the hydrolysis of novel esters by human carboxylesterase hCES2. The study involved first a homology modeling of the hCES2 protein based on the model of hCES1 since the two proteins share a high degree of homology (congruent with 73%). A set of 40 known substrates of hCES2 was taken from the literature; the ligands were docked in both their neutral and ionized forms using GriDock, a parallel tool based on the AutoDock4.0 engine which can perform efficient and easy virtual screening analyses of large molecular databases exploiting multi-core architectures. Useful statistical models (e.g., r (2) = 0.91 for substrates in their unprotonated state) were calculated by correlating experimental pK(m) values with distance between the carbon atom of the substrate's ester group and the hydroxy function of Ser228. Additional parameters in the equations accounted for hydrophobic and electrostatic interactions between substrates and contributing residues. The negatively charged residues in the hCES2 cavity explained the preference of the enzyme for neutral substrates and, more generally, suggested that ligands which interact too strongly by ionic bonds (e.g., ACE inhibitors) cannot be good CES2 substrates because they are trapped in the cavity in unproductive modes and behave as inhibitors. The effects of protonation on substrate recognition and the contrasting behavior of substrates and products were finally investigated by MD simulations of some CES2 complexes.
Resumo:
Since 1986, several near-vertical seismic reflection profiles have been recorded in Switzerland in order to map the deep geologic structure of the Alps. One objective of this endeavour has been to determine the geometries of the autochthonous basement and of the external crystalline massifs, important elements for understanding the geodynamics of the Alpine orogeny. The PNR-20 seismic line W1, located in the Rawil depression of the western Swiss Alps, provides important information on this subject. It extends northward from the `'Penninic front'' across the Helvetic nappes to the Prealps. The crystalline massifs do not outcrop along this profile. Thus, the interpretation of `'near-basement'' reflections has to be constrained by down-dip projections of surface geology, `'true amplitude'' processing, rock physical property studies and modelling. 3-D seismic modelling has been used to evaluate the seismic response of two alternative down-dip projection models. To constrain the interpretation in the southern part of the profile, `'true amplitude'' processing has provided information on the strength of the reflections. Density and velocity measurements on core samples collected up-dip from the region of the seismic line have been used to evaluate reflection coefficients of typical lithologic boundaries in the region. The cover-basement contact itself is not a source of strong reflections, but strong reflections arise from within the overlaying metasedimentary cover sequence, allowing the geometry of the top of the basement to be determined on the basis of `'near-basement'' reflections. The front of the external crystalline massifs is shown to extend beneath the Prealps, about 6 km north of the expected position. A 2-D model whose seismic response shows reflection patterns very similar to the observed is proposed.
Resumo:
Despite their limited proliferation capacity, regulatory T cells (T(regs)) constitute a population maintained over the entire lifetime of a human organism. The means by which T(regs) sustain a stable pool in vivo are controversial. Using a mathematical model, we address this issue by evaluating several biological scenarios of the origins and the proliferation capacity of two subsets of T(regs): precursor CD4(+)CD25(+)CD45RO(-) and mature CD4(+)CD25(+)CD45RO(+) cells. The lifelong dynamics of T(regs) are described by a set of ordinary differential equations, driven by a stochastic process representing the major immune reactions involving these cells. The model dynamics are validated using data from human donors of different ages. Analysis of the data led to the identification of two properties of the dynamics: (1) the equilibrium in the CD4(+)CD25(+)FoxP3(+)T(regs) population is maintained over both precursor and mature T(regs) pools together, and (2) the ratio between precursor and mature T(regs) is inverted in the early years of adulthood. Then, using the model, we identified three biologically relevant scenarios that have the above properties: (1) the unique source of mature T(regs) is the antigen-driven differentiation of precursors that acquire the mature profile in the periphery and the proliferation of T(regs) is essential for the development and the maintenance of the pool; there exist other sources of mature T(regs), such as (2) a homeostatic density-dependent regulation or (3) thymus- or effector-derived T(regs), and in both cases, antigen-induced proliferation is not necessary for the development of a stable pool of T(regs). This is the first time that a mathematical model built to describe the in vivo dynamics of regulatory T cells is validated using human data. The application of this model provides an invaluable tool in estimating the amount of regulatory T cells as a function of time in the blood of patients that received a solid organ transplant or are suffering from an autoimmune disease.
Resumo:
BACKGROUND: Acetate metabolism in skeletal muscle is regulated by acetylCoA synthetase (ACS). The main function of ACS is to provide cells with acetylCoA, a key molecule for numerous metabolic pathways including fatty acid and cholesterol synthesis and the Krebs cycle. METHODS: Hyperpolarized [1-(13)C]acetate prepared via dissolution dynamic nuclear polarization was injected intravenously at different concentrations into rats. The (13)C magnetic resonance signals of [1-(13)C]acetate and [1-(13)C]acetylcarnitine were recorded in vivo for 1min. The kinetic rate constants related to the transformation of acetate into acetylcarnitine were deduced from the 3s time resolution measurements using two approaches, either mathematical modeling or relative metabolite ratios. RESULTS: Although separated by two biochemical transformations, a kinetic analysis of the (13)C label flow from [1-(13)C]acetate to [1-(13)C]acetylcarnitine led to a unique determination of the activity of ACS. The in vivo Michaelis constants for ACS were KM=0.35±0.13mM and Vmax=0.199±0.031μmol/g/min. CONCLUSIONS: The conversion rates from hyperpolarized acetate into acetylcarnitine were quantified in vivo and, although separated by two enzymatic reactions, these rates uniquely defined the activity of ACS. The conversion rates associated with ACS were obtained using two analytical approaches, both methods yielding similar results. GENERAL SIGNIFICANCE: This study demonstrates the feasibility of directly measuring ACS activity in vivo and, since the activity of ACS can be affected by various pathological states such as cancer or diabetes, the proposed method could be used to non-invasively probe metabolic signatures of ACS in diseased tissue.
Resumo:
ABSTRACT: BACKGROUND: The prevalence of obesity has increased in societies of all socio-cultural backgrounds. To date, guidelines set forward to prevent obesity have universally emphasized optimal levels of physical activity. However there are few empirical data to support the assertion that low levels of energy expenditure in activity is a causal factor in the current obesity epidemic are very limited. METHODS: The Modeling the Epidemiologic Transition Study (METS) is a cohort study designed to assess the association between physical activity levels and relative weight, weight gain and diabetes and cardiovascular disease risk in five population-based samples at different stages of economic development. Twenty-five hundred young adults, ages 25-45, were enrolled in the study; 500 from sites in Ghana, South Africa, Seychelles, Jamaica and the United States. At baseline, physical activity levels were assessed using accelerometry and a questionnaire in all participants and by doubly labeled water in a subsample of 75 per site. We assessed dietary intake using two separate 24-h recalls, body composition using bioelectrical impedance analysis, and health history, social and economic indicators by questionnaire. Blood pressure was measured and blood samples collected for measurement of lipids, glucose, insulin and adipokines. Full examination including physical activity using accelerometry, anthropometric data and fasting glucose will take place at 12 and 24 months. The distribution of the main variables and the associations between physical activity, independent of energy intake, glucose metabolism and anthropometric measures will be assessed using cross-section and longitudinal analysis within and between sites. DISCUSSION: METS will provide insight on the relative contribution of physical activity and diet to excess weight, age-related weight gain and incident glucose impairment in five populations' samples of young adults at different stages of economic development. These data should be useful for the development of empirically-based public health policy aimed at the prevention of obesity and associated chronic diseases.
Resumo:
Initial topography and inherited structural discontinuities are known to play a dominant role in rock slope stability. Previous 2-D physical modeling results demonstrated that even if few preexisting fractures are activated/propagated during gravitational failure all of those heterogeneities had a great influence on mobilized volume and its kinematics. The question we address in the present study is to determine if such a result is also observed in 3-D. As in 2-D previous models we examine geologically stable model configuration, based upon the well documented landslide at Randa, Switzerland. The 3-D models consisted of a homogeneous material in which several fracture zones were introduced in order to study simplified but realistic configurations of discontinuities (e.g. based on natural example rather than a parametric study). Results showed that the type of gravitational failure (deep-seated landslide or sequential failure) and resulting slope morphology evolution are the result of the interplay of initial topography and inherited preexisting fractures (orientation and density). The three main results are i) the initial topography exerts a strong control on gravitational slope failure. Indeed in each tested configuration (even in the isotropic one without fractures) the model is affected by a rock slide, ii) the number of simulated fracture sets greatly influences the volume mobilized and its kinematics, and iii) the failure zone involved in the 1991 event is smaller than the results produced by the analog modeling. This failure may indicate that the zone mobilized in 1991 is potentially only a part of a larger deep-seated landslide and/or wider deep seated gravitational slope deformation.
Resumo:
L'activité humaine affecte particulièrement la biodiversité, qui décline à une vitesse préoccupante. Parmi les facteurs réduisant la biodiversité, on trouve les espèces envahissantes. Symptomatiques d'un monde globalisé où l'échange se fait à l'échelle de la planète, certaines espèces, animales ou végétales, sont introduites, volontairement ou accidentellement par l'activité humaine (par exemple lors des échanges commerciaux ou par les voyageurs). Ainsi, ces espèces atteignent des régions qu'elles n'auraient jamais pu coloniser naturellement. Une fois introduites, l'absence de compétiteur peut les rendre particulièrement nuisibles. Ces nuisances sont plus ou moins directes, allant de problèmes sanitaires (p. ex. les piqûres très aigües des fourmis de feu, originaires d'Amérique du Sud et colonisant à une vitesse fulgurante les USA, l'Australie ou la Chine) à des nuisances sur la biodiversité (p. ex. les ravages de la perche du Nil sur la diversité unique des poissons Cichlidés du Lac Victoria). Il est donc important de pouvoir prévenir de telles introductions. De plus, pour le biologiste, ces espèces représentent une rare occasion de pouvoir comprendre les mécanismes évolutifs et écologiques qui expliquent le succès des envahissantes dans un monde où les équilibres sont bouleversés. Les modèles de niche environnementale sont un outil particulièrement utile dans le cadre de cette problématique. En reliant des observations d'espèces aux conditions environnementales où elles se trouvent, ils peuvent prédire la distribution potentielle des envahissantes, permettant d'anticiper et de mieux limiter leur impact. Toutefois, ils reposent sur des hypothèses pas évidentes à démontrer. L'une d'entre elle étant que la niche d'une espèce reste constante dans le temps, et dans l'espace. Le premier objectif de mon travail est de comparer si la niche d'une espèce envahissante diffère entre sa distribution d'origine native et celle d'origine introduite. En étudiant 50 espèces de plantes et 168 espèces de Mammifères, je démontre que c'est le cas et que par corolaire, il est possible de prédire leurs distributions. La deuxième partie de mon travail consiste à comprendre quelles seront les interactions entre le changement climatiques et les envahissantes, afin d'estimer leur impact sous un climat réchauffé. En étudiant la distribution de 49 espèces de plantes envahissantes, je démontre que les montagnes, régions relativement préservée par ce problème, deviendront bien plus exposées aux risques d'invasions biologiques. J'expose aussi comment les interactions entre l'activité humaine, le réchauffement climatique et les espèces envahissantes menacent la vigne sauvage en Europe et propose des zones géographiques particulièrement adaptée pour sa conservation. Enfin, à une échelle beaucoup plus locale, je montre qu'il est possible d'utiliser ces modèles de niches le long d'une rivière à une échelle extrêmement fine (1 mètre), potentiellement utile pour rationnaliser des mesures de conservations sur le terrain. - Biodiversity is significantly negatively affected by human activity. Invasive species are one of the most important factors causing biodiversity's decline. Intimately linked to the era of global trade, some plant or animal species can be accidentally or casually introduced with human activity (e.g. trade or travel). In this way, these species reach areas they could never reach through natural dispersal. Once naturalized, the lack of competitors can make these species highly noxious. Their effect is more or less direct, from sanitary problems (e.g. the harmful sting of Fire Ants, originating from South America and now spreading throughout USA, China and Australia) or can affect biodiversity (e.g. the Nile perch, devastating the one of the richest hotspot of Cichlid fishes diversity in Lake Victoria). It is thus important to prevent such harmful introductions. Moreover, invasive species represent for biologists one of the rare occasions to understand the evolutionary and ecological mechanisms behind the success of invaders in a world where natural equilibrium is already disturbed. Environmental niche models are particularly useful to tackle this problematic. By relating species observation to the environmental conditions where they occur, they can predict the potential distribution of invasive species, allowing a better anticipation and thus limiting their impact. However, they rely on strong assumption, one of the most important being that the modeled niche remains constant through space and time. The first aim of my thesis is to quantify the difference between the native and the invaded niche. By investigating 50 plant and 168 mammal species, I show that the niche is at least partially conserved, supporting for reliable predictions of invasive' s potential distributions. The second aim of my thesis is to understand the possible interactions between climate change and invasive species, such as to assess their impact under a warmer climate. By studying 49 invasive plant species, I show that mountain areas, which were relatively preserved, will become more suitable for biological invasions. Additionally, I show how interactions between human activity, global warming and invasive species are threatening the wild grapevine in Europe and propose geographical areas particularly adapted for conservation measures. Finally, at a much finer scale where conservation plannings ultimately take place, I show that it is possible to model the niche at very high resolution (1 meter) in an alluvial area allowing better prioritizations for conservation.