204 resultados para KIMAP mouse model
Resumo:
As part of a European initiative (EuroVacc), we report the design, construction, and immunogenicity of two HIV-1 vaccine candidates based on a clade C virus strain (CN54) representing the current major epidemic in Asia and parts of Africa. Open reading frames encoding an artificial 160-kDa GagPolNef (GPN) polyprotein and the external glycoprotein gp120 were fully RNA and codon optimized. A DNA vaccine (DNA-GPN and DNA-gp120, referred to as DNA-C), and a replication-deficient vaccinia virus encoding both reading frames (NYVAC-C), were assessed regarding immunogenicity in Balb/C mice. The intramuscular administration of both plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial T-cell responses against both antigens as well as Env-specific antibodies. Whereas low doses of NYVAC-C failed to induce specific CTL or antibodies, high doses generated cellular as well as humoral immune responses, but these did not reach the levels seen following DNA vaccination. The most potent immune responses were detectable using prime:boost protocols, regardless of whether DNA-C or NYVAC-C was used as the priming or boosting agent. These preclinical findings revealed the immunogenic response triggered by DNA-C and its enhancement by combining it with NYVAC-C, thus complementing the macaque preclinical and human phase I clinical studies of EuroVacc.
Resumo:
Background and Aims: Granulocyte-macrophage colonystimulating factor (GM-CSF), a cytokine modulating the number and function of innate immune cells, has been shown to provide symptomatic benefit in some patients with Crohn's disease (CD). Since, it becomes widely appreciated that a timely and spatially regulated action of innate immune cells is critical for tissue regeneration, we tested whether GM-CSF therapy may favours intestinal mucosal repair in the acute mouse model of dextran sulfate sodium (DSS)-induced colitis. Methods: Mice treated with GM-CSF or saline were exposed for 7 days to DSS to induce colitis. On day 5, 7 and 10, mice were subjected to colonoscopy or sacrificed for evaluation of inflammatory reaction and mucosal healing. Results: GM-CSF therapy prevented body weight loss, diarrhea, dampened inflammatory reactions and ameliorated mucosal damages. Mucosal repair improvement in GM-CSF-treated mice was observed from day 7 on both by colonoscopy (ulceration score 1.2}0.3 (GM-CSF-treated) vs 3.1}0.5 (untreated), p = 0.01) and histological analysis (percentage of reepithelialized ulcers 55%}4% (GM-CSF-treated) vs 18%}13% (untreated), p = 0.01). GM-CSF therapy can still improve the colitis when hematopoietic, but not non-hematopoietic cells, are responsive to GM-CSF, as shown in WT→GM-CSFRKO chimeras. Lastly, we observed that GM-CSF-induced promotion of wound healing is associated with a modification of the cellular composition of DSS-induced colonic inflammatory infiltrate, characterized by the reduction of neutrophil numbers and early accumulation of CD11b+Gr1lo myeloid cells. Conclusion: Our study shows that GM-CSF therapy accelerates the complex program leading to tissue repair during acute colitis and suggests that GM-CSF promotion of mucosal repair might contribute to the symptomatic benefits of GM-CSF therapy observed in some CD patients.
Resumo:
Combination therapy may improve the outcome of Streptococcus pneumoniae-induced bacteraemia. Here we tested the combination of two antipneumococcal agents, daptomycin and Cpl-1 (the pneumococcal Cp-1 bacteriophage lysin), in a mouse model of pneumococcal bacteraemia. Mice were challenged intraperitoneally (i.p.) with 10(6)CFU of the extremely virulent serotype 2 S. pneumoniae D39 isolate. Subtherapeutic doses of daptomycin (0.4mg/kg) and Cpl-1 (0.4mg/kg and 1mg/kg) were administrated i.p. either alone or in combination by a single bolus injection 1h after bacterial challenge. Survival rates of animals were followed over a period of 7 days. Daptomycin (0.4mg/kg) in combination with Cpl-1 (0.4mg/kg) significantly increased the percentage of surviving mice at Day 7 (80%) compared with the untreated control (0%) and daptomycin or Cpl-1 monotherapy (35% and 0%, respectively). Whilst increasing the concentration of Cpl-1 to 1.0mg/kg did not improve survival when injected alone, its combination with 0.4mg/kg daptomycin further increased the survival rate to 95%. Thus, it was found that the combination of daptomycin with Cpl-1 was synergistic and bactericidal against S. pneumoniae in a mouse model of pneumococcal bacteraemia. To our knowledge, this is the first report of synergism between daptomycin and a phage lysin demonstrated in vivo. Such a combination could represent an interesting alternative therapy for the treatment of pneumococcal bacteraemia/sepsis and possibly other severe pneumococcal infections.
Resumo:
Beta-hemolytic Streptococcus agalactiae is the leading cause of bacteremia and invasive infections. These diseases are treated with β-lactams or macrolides, but the emergence of less susceptible and even fully resistant strains is a cause for concern. New bacteriophage lysins could be promising alternatives against such organisms. They hydrolyze the bacterial peptidoglycan at the end of the phage cycle, in order to release the phage progeny. By using a bioinformatic approach to screen several beta-hemolytic streptococci, a gene coding for a lysin was identified on a prophage carried by Streptococcus dysgalactiae subsp. equisimilis SK1249. The gene product, named PlySK1249, harbored an original three-domain structure with a central cell wall-binding domain surrounded by an N-terminal amidase and a C-terminal CHAP domain. Purified PlySK1249 was highly lytic and bactericidal for S. dysgalactiae (2-log10 CFU/ml decrease within 15 min). Moreover, it also efficiently killed S. agalactiae (1.5-log10 CFU/ml decrease within 15 min) but not several streptococcal commensal species. We further investigated the activity of PlySK1249 in a mouse model of S. agalactiae bacteremia. Eighty percent of the animals (n = 10) challenged intraperitoneally with 10(6) CFU of S. agalactiae died within 72 h, whereas repeated injections of PlySK1249 (45 mg/kg 3 times within 24 h) significantly protected the mice (P < 0.01). Thus, PlySK1249, which was isolated from S. dysgalactiae, demonstrated high cross-lytic activity against S. agalactiae both in vitro and in vivo. These encouraging results indicated that PlySK1249 might represent a good candidate to be developed as a new enzybiotic for the treatment of systemic S. agalactiae infections.
Resumo:
The Potocki-Lupski syndrome (PTLS) is associated with a microduplication of 17p11.2. Clinical features include multiple congenital and neurobehavioral abnormalities and autistic features. We have generated a PTLS mouse model, Dp(11)17/+, that recapitulates some of the physical and neurobehavioral phenotypes present in patients. Here, we investigated the social behavior and gene expression pattern of this mouse model in a pure C57BL/6-Tyr(c-Brd) genetic background. Dp(11)17/+ male mice displayed normal home-cage behavior but increased anxiety and increased dominant behavior in specific tests. A subtle impairment in the preference for a social target versus an inanimate target and abnormal preference for social novelty (the preference to explore an unfamiliar mouse versus a familiar one) was also observed. Our results indicate that these animals could provide a valuable model to identify the specific gene(s) that confer abnormal social behaviors and that map within this delimited genomic deletion interval. In a first attempt to identify candidate genes and for elucidating the mechanisms of regulation of these important phenotypes, we directly assessed the relative transcription of genes within and around this genomic interval. In this mouse model, we found that candidates genes include not only most of the duplicated genes, but also normal-copy genes that flank the engineered interval; both categories of genes showed altered expression levels in the hippocampus of Dp(11)17/+ mice.
Resumo:
Endometriosis, a leading cause of pelvic pain and infertility, is characterized by ectopic growth of endometrial-like tissue and affects approximately 176 million women worldwide. The pathophysiology involves inflammatory and angiogenic mediators as well as estrogen-mediated signaling and novel, improved therapeutics targeting these pathways are necessary. The aim of this study was to investigate mechanisms leading to the establishment and progression of endometriosis as well as the effect of local treatment with Lipoxin A4 (LXA₄), an anti-inflammatory and pro-resolving lipid mediator that we have recently characterized as an estrogen receptor agonist. LXA₄ treatment significantly reduced endometriotic lesion size and downregulated the pro-inflammatory cytokines IL-1β and IL-6, as well as the angiogenic factor VEGF. LXA₄ also inhibited COX-2 expression in both endometriotic lesions and peritoneal fluid cells, resulting in attenuated peritoneal fluid Prostaglandin E₂ (PGE₂) levels. Besides its anti-inflammatory effects, LXA₄ differentially regulated the expression and activity of the matrix remodeling enzyme matrix metalloproteinase (MMP)-9 as well as modulating transforming growth factor (TGF)-β isoform expression within endometriotic lesions and in peritoneal fluid cells. We also report for first time that LXA₄ attenuated aromatase expression, estrogen signaling and estrogen-regulated genes implicated in cellular proliferation in a mouse model of disease. These effects were observed both when LXA₄ was administered prior to disease induction and during established disease. Collectively, our findings highlight potential targets for the treatment of endometriosis and suggest a pleotropic effect of LXA₄ on disease progression, by attenuating pro-inflammatory and angiogenic mediators, matrix remodeling enzymes, estrogen metabolism and signaling, as well as downstream proliferative pathways.
Resumo:
Myotonic dystrophy (DM1) is a multisystemic disease caused by an expansion of CTG repeats in the region of DMPK, the gene encoding DM protein kinase. The severity of muscle disability in DM1 correlates with the size of CTG expansion. As respiratory failure is one of the main causes of death in DM1, we investigated the correlation between respiratory impairment and size of the (CTG)n repeat in DM1 animal models. Using pressure plethysmography the respiratory function was assessed in control and transgenic mice carrying either 600 (DM600) or >1300 CTG repeats (DMSXL). The statistical analysis of respiratory parameters revealed that both DM1 transgenic mice sub-lines show respiratory impairment compared to control mice. In addition, there is no significant difference in breathing functions between the DM600 and DMSXL mice. In conclusion, these results indicate that respiratory impairment is present in both transgenic mice sub-lines, but the severity of respiratory failure is not related to the size of the (CTG)n expansion.
Resumo:
Duchenne muscular dystrophy (DMD) is a severe disorder characterized by progressive muscle wasting,respiratory and cardiac impairments, and premature death. No treatment exists so far, and the identification of active substances to fight DMD is urgently needed. We found that tamoxifen, a drug used to treat estrogen-dependent breast cancer, caused remarkable improvements of muscle force and of diaphragm and cardiac structure in the mdx(5Cv) mouse model of DMD. Oral tamoxifen treatment from 3 weeks of age for 15 months at a dose of 10 mg/kg/day stabilized myofiber membranes, normalized whole body force, and increased force production and resistance to repeated contractions of the triceps muscle above normal values. Tamoxifen improved the structure of leg muscles and diminished cardiac fibrosis by~ 50%. Tamoxifen also reduced fibrosis in the diaphragm, while increasing its thickness,myofiber count, and myofiber diameter, thereby augmenting by 72% the amount of contractile tissue available for respiratory function. Tamoxifen conferred a markedly slower phenotype to the muscles.Tamoxifen and its metabolites were present in nanomolar concentrations in plasma and muscles,suggesting signaling through high-affinity targets. Interestingly, the estrogen receptors ERa and ERb were several times more abundant in dystrophic than in normal muscles, and tamoxifen normalized the relative abundance of ERb isoforms. Our findings suggest that tamoxifen might be a useful therapy for DMD.
Resumo:
Mutations in GDAP1, which encodes protein located in the mitochondrial outer membrane, cause axonal recessive (AR-CMT2), axonal dominant (CMT2K) and demyelinating recessive (CMT4A) forms of Charcot-Marie-Tooth (CMT) neuropathy. Loss of function recessive mutations in GDAP1 are associated with decreased mitochondrial fission activity, while dominant mutations result in impairment of mitochondrial fusion with increased production of reactive oxygen species and susceptibility to apoptotic stimuli. GDAP1 silencing in vitro reduces Ca2+ inflow through store-operated Ca2+ entry (SOCE) upon mobilization of endoplasmic reticulum (ER) Ca2+, likely in association with an abnormal distribution of the mitochondrial network. To investigate the functional consequences of lack of GDAP1 in vivo, we generated a Gdap1 knockout mouse. The affected animals presented abnormal motor behavior starting at the age of 3 months. Electrophysiological and biochemical studies confirmed the axonal nature of the neuropathy whereas histopathological studies over time showed progressive loss of motor neurons (MNs) in the anterior horn of the spinal cord and defects in neuromuscular junctions. Analyses of cultured embryonic MNs and adult dorsal root ganglia neurons from affected animals demonstrated large and defective mitochondria, changes in the ER cisternae, reduced acetylation of cytoskeletal α-tubulin and increased autophagy vesicles. Importantly, MNs showed reduced cytosolic calcium and SOCE response. The development and characterization of the GDAP1 neuropathy mice model thus revealed that some of the pathophysiological changes present in axonal recessive form of the GDAP1-related CMT might be the consequence of changes in the mitochondrial network biology and mitochondria-endoplasmic reticulum interaction leading to abnormalities in calcium homeostasis.
Resumo:
Langerhans cell histiocytosis (LCH) is a rare disease caused by the clonal accumulation of dendritic Langerhans cells, which is often accompanied by osteolytic lesions. It has been reported that osteoclast-like cells play a major role in the pathogenic bone destruction seen in patients with LCH and these cells are postulated to originate from the fusion of DCs. However, due to the lack of reliable animal models the pathogenesis of LCH is still poorly understood. In this study, we have established a mouse model of histiocytosis- recapitulating human disease for osteolytic lesions seen in LCH patients. At 12 weeks after birth, severe bone lesions were observed in our multisystem histiocytosis (Mushi) model, when CD8α conventional dendritic cells (DCs) are transformed (MuTuDC) and accumulate. Most importantly, our study demonstrates that bone loss in LCH can be accounted for the transdifferentiation of MuTuDCs into functional osteoclasts both in vivo and in vitro. Moreover, we have shown that injected MuTuDCs reverse the osteopetrotic phenotype of oc/oc mice in vivo. In conclusion, our results support a crucial role of DCs in bone lesions in histiocytosis patients. Furthermore, our new model of LCH based on adoptive transfer of MuTuDC lines, leading to bone lesions within 1-2 weeks, will be an important tool for investigating the pathophysiology of this disease and ultimately for evaluating the potential of anti-resorptive drugs for the treatment of bone lesions.
Resumo:
Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by mutations in SLC26A2, a cell membrane sulfate-chloride antiporter. Sulfate uptake impairment results in low cytosolic sulfate, leading to cartilage proteoglycan (PG) undersulfation. In this work, we used the dtd mouse model to study the role of N-acetyl-l-cysteine (NAC), a well-known drug with antioxidant properties, as an intracellular sulfate source for macromolecular sulfation. Because of the important pre-natal phase of skeletal development and growth, we administered 30 g/l NAC in the drinking water to pregnant mice to explore a possible transplacental effect on the fetuses. When cartilage PG sulfation was evaluated by high-performance liquid chromatography disaccharide analysis in dtd newborn mice, a marked increase in PG sulfation was observed in newborns from NAC-treated pregnancies when compared with the placebo group. Morphometric studies of the femur, tibia and ilium after skeletal staining with alcian blue and alizarin red indicated a partial rescue of abnormal bone morphology in dtd newborns from treated females, compared with pups from untreated females. The beneficial effect of increased macromolecular sulfation was confirmed by chondrocyte proliferation studies in cryosections of the tibial epiphysis by proliferating cell nuclear antigen immunohistochemistry: the percentage of proliferating cells, significantly reduced in the placebo group, reached normal values in dtd newborns from NAC-treated females. In conclusion, NAC is a useful source of sulfate for macromolecular sulfation in vivo when extracellular sulfate supply is reduced, confirming the potential of therapeutic approaches with thiol compounds to improve skeletal deformity and short stature in human DTD and related disorders.
Resumo:
L'ARN polymérase 3 transcrit un petit groupe de gènes fortement exprimés et impliqués dans plusieurs mécanismes moléculaires. Les ARNs de transfert ou ARNt représentent plus ou moins la moitié du transcriptome de l'ARN polymérase 3. Ils sont directement impliqués dans la traduction des protéines en agissant comme transporteurs d'acides aminés qui sont incorporés à la chaîne naissante de polypeptides. Chez des levures cultivées dans un milieu jusqu'à épuisement des nutriments, Maf1 réprime la transcription par l'ARN polymérase 3, favorisant ainsi l'économie énergétique cellulaire. Dans un modèle de cellules de mammifères, MAF1 réprime aussi la transcription de l'ARN polymérase 3 dans des conditions de stress, cependant il n'existe aucune donnée quant à son rôle chez un mammifère vivant. Pendant mon doctorat, j'ai utilisé une souris délétée pour le gène Maf1 afin de connaître les effets de ce gène chez un mammifère. Etonnamment, la souris Maf1-‐/-‐ est résistante à l'obésité même si celle-‐ci est nourrie avec une nourriture riche en matières grasses. Des études moléculaires et de métabolomiques ont montré qu'il existe des cycles futiles de production et dégradation des lipides et des ARNt, ce qui entraîne une augmentation de la dépense énergique et favorise la résistance à l'obésité. En plus de la caractérisation de la souris Maf1-‐/-‐, pendant ma thèse j'ai également développé une méthode afin de normaliser les données de ChIP-‐sequencing. Cette méthode est fondée sur l'utilisation d'un contrôle interne, représenté ici par l'ajout d'une quantité fixe de chromatine provenant d'un organisme différent de celui étudié. La méthode a amélioré considérablement la reproductibilité des valeurs entre réplicas biologiques. Elle a aussi révélé des différences entre échantillons issus de conditions différentes. Une occupation supérieure de l'ARN polymérase 3 sur les gènes Pol 3 chez les souris Maf1 KO entraîne une augmentation du niveau de précurseurs d'ARNt, ayant pour effet probable la saturation de la machinerie de maturation des ARNt. En effet, chez les souris Maf1 KO, le pourcentage d'ARNt modifiés est plus faible que chez les souris type sauvage. Ce déséquilibre entre le niveau de précurseurs et d'ARNt matures entraîne une diminution de la traduction protéique. Ces résultats ont permis d'identifier de nouvelles fonctions pour la protéine MAF1, comme étant une protéine régulatrice à la fois de la transcription mais aussi de la traduction et en étant un cible potentielle au traitement à l'obésité. -- RNA polymerase III (Pol 3) transcribes a small set of highly expressed genes involved in different molecular mechanisms. tRNAs account for almost half of the Pol 3 transcriptome and are involved in translation, bringing a new amino into the nascent polypeptide chain. In yeast, under nutrient deprivation, Maf1 acts for cell energetic economy by repressing Pol 3 transcription. In mammalian cells, MAF1 also represses Pol 3 activity under conditions of serum deprivation or DNA damages but nothing is known about its role in a mammalian organism. During my thesis studies, I used a Maf1 KO mouse model to characterize the effects of Maf1 deletion in a living animal. Surprisingly, the MAF1 KO mouse developed an unexpected phenotype, being resistant to high fat diet-‐induced obesity and displaying an extended lifespan. Molecular and metabolomics characterizations revealed futile cycles of lipids and tRNAs, which are produced and immediately degraded, which increases energy consumption in the Maf1 KO mouse and probably explains in part the protection to obesity. Additionally to the mouse characterization, I also developed a method to normalize ChIP-‐seq data, based on the addition of a foreign chromatin to be used as an internal control. The method improved reproducibility between replicates and revealed differences of Pol 3 occupancy between WT and Maf1 KO samples that were not seen without normalization to the internal control. I then established that increased Pol 3 occupancy in the Maf1 KO mouse liver was associated with increased levels of tRNA precursor but not of mature tRNAs, the effective molecules involved in translation. The overproduction of precursor tRNAs associated with the deletion of Maf1 apparently overwhelms the tRNA processing machinery as the Maf1 KO mice have lower levels of fully modified tRNAs. This maturation defect directly impacts on translation efficiency as polysomic fractions and newly synthetized protein levels were reduced in the liver of the Maf1 KO mouse. Altogether, these results indicate new functions for MAF1, a regulator of both transcription and translation as well as a potential target for obesity treatment.
Resumo:
Waddlia chondrophila, an obligate intracellular bacterium belonging to the Chlamydiales order, is considered as an emerging pathogen. Some clinical studies highlighted a possible role of W. chondrophila in bronchiolitis, pneumonia and miscarriage. This pathogenic potential is further supported by the ability of W. chondrophila to infect and replicate within human pneumocytes, macrophages and endometrial cells. Considering that W. chondrophila might be a causative agent of respiratory tract infection, we developed a mouse model of respiratory tract infection to get insight into the pathogenesis of W. chondrophila. Following intranasal inoculation of 2 x 108 W. chondrophila, mice lost up to 40% of their body weight, and succumbed rapidly from infection with a death rate reaching 50% at day 4 post-inoculation. Bacterial loads, estimated by qPCR, increased from day 0 to day 3 post-infection and decreased thereafter in surviving mice. Bacterial growth was confirmed by detecting dividing bacteria using electron microscopy, and living bacteria were isolated from lungs 14 days post-infection. Immunohistochemistry and histopathology of infected lungs revealed the presence of bacteria associated with pneumonia characterized by an important multifocal inflammation. The high inflammatory score in the lungs was associated with the presence of pro-inflammatory cytokines in both serum and lungs at day 3 post-infection. This animal model supports the role of W. chondrophila as an agent of respiratory tract infection, and will help understanding the pathogenesis of this strict intracellular bacterium.