164 resultados para JP Morgan Chase


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION. Neurally Adjusted Ventilatory Assist (NAVA) is a new ventilatory mode in which ventilator settings are adjusted based on the electrical activity detected in the diaphragm (Eadi). This mode offers significant advantages in mechanical ventilation over standard pressure support (PS) modes, since ventilator input is determined directly from patient ventilatory demand. Therefore, it is expected that tidal volume (Vt) under NAVA would show better correlation with Eadi compared with PS, and exhibit greater variability due to the variability in the Eadi input to the ventilator. OBJECTIVES. To compare tidal volume variability in PS and NAVA ventilation modes, and its correlation with patient ventilatory demand (as characterized by maximum Eadi). METHODS. Acomparative study of patient-ventilator interaction was performed for 22 patients during standard PS with clinician determined ventilator settings; and NAVA, with NAVA gain set to ensure the same peak airway pressure as the total pressure obtained in PS. A 20 min continuous recording was performed in each ventilator mode. Respiratory rate, Vt, and Eadi were recorded. Tidal volume variance and Pearson correlation coefficient between Vt and Eadi were calculated for each patient. A periodogram was plotted for each ventilator mode and each patient, showing spectral power as a function of frequency to assess variability. RESULTS. Median, lower quartile and upper quartile values for Vt variance and Vt/Eadi correlation are shown in Table 1. The NAVA cohort exhibits substantially greater correlation and variance than the PS cohort. Power spectrums for Vt and Eadi are shown in Fig. 1 (PS and NAVA) for a typical patient. The enlarged section highlights how changes in Eadi are highly synchronized with NAVA ventilation, but less so for PS. CONCLUSIONS. There is greater variability in tidal volume and correlation between tidal volume and diaphragmatic electrical activity with NAVA compared to PS. These results are consistent with the improved patient-ventilator synchrony reported in the literature.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Table des matières] Introduction et présentation des projets / B. Burnand, JP. Vader, F. Paccaud. - La satisfaction du patient hospitalisé : un petit guide / M. Lorenzini, Y. Eggli. - "Satisfaction du patient hospitalisé": enquête exploratoire par entretien / M. Lorenzini. - Patientenzufriedenheit, Studie Kardiologie Bern/Basel: Schlussbericht / M. Langenegger. - Notfallstation und Spitalaufenthalt aus der Sicht des Patienten : eine kundenorientierte, repräsentative Erhebung / W. Langewitz, H. Weber, M. Zierath. - Satisfaction des patients hospitalisés pour cardiopathie ischémique aiguë / B. Burnand, K. Dupriez, T. Pernegger, MD. Schaller, JM. Gaspoz. - Commentaires et recommandations / B. Burnand, JP. Vader, F. Paccaud. Annexes: Questionnaire "Appréciation critique de votre séjour hospitalier". - Questionnaire de satisfaction du Service des hospices cantonaux "Votre séjour à l'hôpital - votre point de vue"; etc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biosynthesis, intracellular transport, and surface expression of the beta cell glucose transporter GLUT2 was investigated in isolated islets and insulinoma cells. Using a trypsin sensitivity assay to measure cell surface expression, we determined that: (a) greater than 95% of GLUT2 was expressed on the plasma membrane; (b) GLUT2 did not recycle in intracellular vesicles; and (c) after trypsin treatment, reexpression of the intact transporter occurred with a t1/2 of approximately 7 h. Kinetics of intracellular transport of GLUT2 was investigated in pulse-labeling experiments combined with glycosidase treatment and the trypsin sensitivity assay. We determined that transport from the endoplasmic reticulum to the trans-Golgi network (TGN) occurred with a t1/2 of 15 min and that transport from the TGN to the plasma membrane required a similar half-time. When added at the start of a pulse-labeling experiment, brefeldin A prevented exit of GLUT2 from the endoplasmic reticulum. When the transporter was first accumulated in the TGN during a 15-min period of chase, but not following a low temperature (22 degrees C) incubation, addition of brefeldin A (BFA) prevented subsequent surface expression of the transporter. This indicated that brefeldin A prevented GLUT2 exit from the TGN by acting at a site proximal to the 22 degrees C block. Together, these data demonstrate that GLUT2 surface expression in beta cells is via the constitutive pathway, that transport can be blocked by BFA at two distinct steps and that once on the surface, GLUT2 does not recycle in intracellular vesicles.