196 resultados para Interacting Phenotypes
Resumo:
Malondialdehyde (MDA) is a small, ubiquitous, and potentially toxic aldehyde that is produced in vivo by lipid oxidation and that is able to affect gene expression. Tocopherol deficiency in the vitamin E2 mutant vte2-1 of Arabidopsis thaliana leads to massive lipid oxidation and MDA accumulation shortly after germination. MDA accumulation correlates with a strong visual phenotype (growth reduction, cotyledon bleaching) and aberrant GST1 (glutathione S-transferase 1) expression. We suppressed MDA accumulation in the vte2-1 background by genetically removing tri-unsaturated fatty acids. The resulting quadruple mutant, fad3-2 fad7-2 fad8 vte2-1, did not display the visual phenotype or the aberrant GST1 expression observed in vte2-1. Moreover, cotyledon bleaching in vte2-1 was chemically phenocopied by treatment of wild-type plants with MDA. These data suggest that products of tri-unsaturated fatty acid oxidation underlie the vte2-1 seedling phenotype, including cellular toxicity and gene regulation properties. Generation of the quadruple mutant facilitated the development of an in situ fluorescence assay based on the formation of adducts of MDA with 2-thiobarbituric acid at 37 degrees C. Specificity was verified by measuring pentafluorophenylhydrazine derivatives of MDA and by liquid chromatography analysis of MDA-2-thiobarbituric acid adducts. Potentially applicable to other organisms, this method allowed the localization of MDA pools throughout the body of Arabidopsis and revealed an undiscovered pool of the compound unlikely to be derived from trienoic fatty acids in the vicinity of the root tip quiescent center.
Resumo:
Mitogen-activated protein kinase (MAPK) cascades regulate a wide variety of cellular processes that ultimately depend on changes in gene expression. We have found a novel mechanism whereby one of the key MAP3 kinases, Mekk1, regulates transcriptional activity through an interaction with p53. The tumor suppressor protein p53 down-regulates a number of genes, including the gene most frequently mutated in autosomal dominant polycystic kidney disease (PKD1). We have discovered that Mekk1 translocates to the nucleus and acts as a co-repressor with p53 to down-regulate PKD1 transcriptional activity. This repression does not require Mekk1 kinase activity, excluding the need for an Mekk1 phosphorylation cascade. However, this PKD1 repression can also be induced by the stress-pathway stimuli, including TNFα, suggesting that Mekk1 activation induces both JNK-dependent and JNK-independent pathways that target the PKD1 gene. An Mekk1-p53 interaction at the PKD1 promoter suggests a new mechanism by which abnormally elevated stress-pathway stimuli might directly down-regulate the PKD1 gene, possibly causing haploinsufficiency and cyst formation.
Resumo:
OBJECTIVES: The aims of this study were to describe the clinical features of periodic fever, aphthous stomatitis, pharyngitis and cervical adenitis (PFAPA) and identify distinct phenotypes in a large cohort of patients from different countries. METHODS: We established a web-based multicentre cohort through an international collaboration within the periodic fevers working party of the Pediatric Rheumatology European Society (PReS). The inclusion criterion was a diagnosis of PFAPA given by an experienced paediatric rheumatologist participating in an international working group on periodic fever syndromes. RESULTS: Of the 301 patients included from the 15 centres, 271 had pharyngitis, 236 cervical adenitis, 171 oral aphthosis and 132 with all three clinical features. A total of 228 patients presented with additional symptoms (131 gastrointestinal symptoms, 86 arthralgias and/or myalgias, 36 skin rashes, 8 neurological symptoms). Thirty-one patients had disease onset after 5 years and they reported more additional symptoms. A positive family history for recurrent fever or recurrent tonsillitis was found in 81 patients (26.9%). Genetic testing for monogenic periodic fever syndromes was performed on 111 patients, who reported fewer occurrences of oral aphthosis or additional symptoms. Twenty-four patients reported symptoms (oral aphthosis and malaise) outside the flares. The CRP was >50 mg/l in the majority (131/190) of the patients tested during the fever. CONCLUSION: We describe the largest cohort of PFAPA patients presented so far. We confirm that PFAPA may present with varied clinical manifestations and we show the limitations of the commonly used diagnostic criteria. Based on detailed analysis of this cohort, a consensus definition of PFAPA with better-defined criteria should be proposed.
Resumo:
Numerous epidemiological studies and some pharmacological clinical trials show the close connection between Alzheimer disease (AD) and type 2 diabetes (T2D) and thereby, shed more light into the existence of possible similar pathogenic mechanisms between these two diseases. Diabetes increases the risk of developing AD and sensitizers of insulin currently used as diabetes drugs can efficiently slow cognitive decline of the neurological disorder. Deposits of amyloid aggregate and hyperphosphorylation of tau, which are hallmarks of AD, have been also found in degenerating pancreatic islets beta-cells of patients with T2D. These events may have a causal role in the pathogenesis of the two diseases. Increased c-Jun NH(2)-terminal kinase (JNK) activity is found in neurofibrillary tangles (NFT) of AD and promotes programmed cell death of beta-cells exposed to a diabetic environment. The JNK-interacting protein 1 (JIP-1), also called islet brain 1 (IB1) because it is mostly expressed in the brain and islets, is a key regulator of the JNK pathway in neuronal and beta-cells. JNK, hyperphosphorylated tau and IB1/JIP-1 all co-localize with amyloids deposits in NFT and islets of AD and patients with T2D. This review discusses the role of the IB1/JIP-1 and the JNK pathway in the molecular pathogenesis of AD and T2D.
Resumo:
Islet-brain1/JNK-interacting protein-1 (IB1/JIP-1) is a scaffold protein that organizes the JNK, MKK7, and MLK1 to allow signaling specificity. Targeted disruption of the gene MAPK8IP1 encoding IB1/JIP-1 in mice led to embryonic death prior to blastocyst implantation. In culture, no IB1/JIP-1(-/-) embryos were identified indicating that accelerated cell death occurred during the first cell cycles. IB1/JIP-1 expression was detected in unfertilized oocytes, in spermatozoa, and in different stages of embryo development. Thus, despite the maternal and paternal transmission of the IB1/JIP-1 protein, early transcription of the MAPK8IP1 gene is required for the survival of the fertilized oocytes.
Resumo:
IB1/JIP-1 is a scaffold protein that regulates the c-Jun NH(2)-terminal kinase (JNK) signaling pathway, which is activated by environmental stresses and/or by treatment with proinflammatory cytokines including IL-1beta and TNF-alpha. The JNKs play an essential role in many biological processes, including the maturation and differentiation of immune cells and the apoptosis of cell targets of the immune system. IB1 is expressed predominantly in brain and pancreatic beta-cells where it protects cells from proapoptotic programs. Recently, a mutation in the amino-terminus of IB1 was associated with diabetes. A novel isoform, IB2, was cloned and characterized. Overall, both IB1 and IB2 proteins share a very similar organization, with a JNK-binding domain, a Src homology 3 domain, a phosphotyrosine-interacting domain, and polyacidic and polyproline stretches located at similar positions. The IB2 gene (HGMW-approved symbol MAPK8IP2) maps to human chromosome 22q13 and contains 10 coding exons. Northern and RT-PCR analyses indicate that IB2 is expressed in brain and in pancreatic cells, including insulin-secreting cells. IB2 interacts with both JNK and the JNK-kinase MKK7. In addition, ectopic expression of the JNK-binding domain of IB2 decreases IL-1beta-induced pancreatic beta-cell death. These data establish IB2 as a novel scaffold protein that regulates the JNK signaling pathway in brain and pancreatic beta-cells and indicate that IB2 represents a novel candidate gene for diabetes.
Resumo:
* Arbuscular mycorrhizal fungi (AMF) are plant symbionts that improve floristic diversity and ecosystem productivity. Many AMF species are generalists with wide host ranges. Arbuscular mycorrhizal fungi individuals are heterokaryotic, and AMF populations are genetically diverse. Populations of AMF harbor two levels of genetic diversity on which selection can act, namely among individuals and within individuals. Whether environmental factors alter genetic diversity within populations is still unknown. * Here, we measured genetic changes and changes in fitness-related traits of genetically distinct AMF individuals from one field, grown with different concentrations of available phosphate or different host species. * We found significant genotype-by-environment interactions for AMF fitness traits in response to these treatments. Host identity had a strong effect on the fitness of different AMF, unearthing a specificity of response within Glomus intraradices. Arbuscular mycorrhizal fungi individuals grown in novel environments consistently showed a reduced presence of polymorphic genetic markers, providing some evidence for host or phosphate-induced genetic change in AMF. * Given that AMF individuals can form extensive hyphal networks colonizing different hosts simultaneously, contrasting habitats or soil properties may lead to evolution in the population. Local selection may alter the structure of AMF populations and maintain genetic diversity, potentially even within the hyphal network of one fungus.
Resumo:
BACKGROUND: The intestinal epithelium accommodates with a myriad of commensals to maintain immunological homeostasis, but the underlying mechanisms regulating epithelial responsiveness to flora-derived signals remain poorly understood. Herein, we sought to determine the role of the Toll/interleukin (IL)-1 receptor regulator Toll-interacting protein (Tollip) in intestinal homeostasis. METHODS: Colitis susceptibility was determined after oral dextran sulfate sodium (DSS) administration or by breeding Tollip on an IL-10 background. The intestinal flora was depleted with 4 antibiotics before DSS exposure to assess its contribution in colitis onset. Bone marrow chimeras were generated to identify the cellular compartment, whereby Tollip may negatively regulate intestinal inflammation in response to DSS. Tollip-dependent epithelial barrier functions were studied in vitro by using Tollip-knockdown in Caco-2 cells and in vivo by immunohistochemistry and fluorescein isothiocyanate-labeled dextran gavage. RESULTS: Genetic ablation of Tollip did not lead to spontaneous intestinal inflammatory disorders. However, Tollip deficiency aggravated spontaneous disease onset in IL-10 mice and increased susceptibility to DSS colitis. Increased colitis severity in Tollip-deficient mice was not improved by bacterial flora depletion using broad-spectrum antibiotics. In addition, DSS exposure of bone marrow chimeric mice revealed a protective role for Tollip in nonhematopoietic cells. Knockdown of Tollip in epithelial cells led to exaggerated NFκ-B activity and proinflammatory cytokine secretion. Finally, DSS-treated Tollip mice showed enhanced intestinal permeability and increased epithelial apoptosis when compared with wild-type controls, a finding that coincided with tight junction alterations on injury. CONCLUSION: Overall, our data show an essential role for Tollip on colitis susceptibility in mice.
Resumo:
Initiation of Bacillus subtilis bacteriophage SPP1 replication requires the phage-encoded genes 38, 39 and 40 products (G38P, G39P and G40P). G39P, which does not bind DNA, interacts with the replisome organiser, G38P, in the absence of ATP and with the ATP-activated hexameric replication fork helicase, G40P. G38P, which specifically interacts with the phage replication origin (oriL) DNA, does not seem to form a stable complex with G40P in solution. G39P when complexed with G40P-ATP inactivates the single-stranded DNA binding, ATPase and unwinding activities of G40P, and such effects are reversed by increasing amounts of G38P. Unwinding of a forked substrate by G40P-ATP is increased about tenfold by the addition of G38P and G39P to the reaction mixture. The specific protein-protein interactions between oriL-bound G38P and the G39P-G40P-ATPgammaS complex are necessary for helicase delivery to the SPP1 replication origin. Formation of G38P-G39P heterodimers releases G40P-ATPgammaS from the unstable oriL-G38P-G39P-G40P-ATPgammaS intermediate. G40P-ATPgammaS binds to the origin region, the uncomplexed G38P fraction remains bound to oriL, and the G38P-G39P heterodimer is lost from the complex. We demonstrate that G39P is a component of an oligomeric nucleoprotein complex which plays an important role in the initiation of SPP1 replication.
Resumo:
BACKGROUND: Sensing of bacterial products via Toll-like receptors is critical to maintain gut immune homeostasis. The Toll-Interacting Protein (Tollip) inhibits downstream signaling through the IL-1 receptor, TLR-2 and TLR-4. Here,we aimed to address the role of Tollip in acute and chronic inflammatory responses in the gut. MATERIAL AND METHODS: WT or Tollip-deficient mice were exposed to dextran sulfate sodium (DSS) 1.5% in the drinking water during 7 days. To generate bone-marrow chimeras, WT or Tollip deficient mice were 900-rads irradiated, transplanted with WT or Tollip deficient bone-marrow cells and challenged with DSS 2-3 months after transplantation. IL-10 deficient mice were bred with Tollip deficient mice and colitis was compared at various time points. RESULTS: Upon DSS exposure, Tollip-deficient mice had increased body weight loss and increased pro-inflammatory cytokine expression compared to WT controls. Challenge of bone-marrow chimeras showed that colitis susceptibility was also increased when Tollip deficiency was restricted to non-hematopoietic cells. DSS-exposure lead to a disorganized distribution of zona-occludens-1, a tight junction marker and increased number of apoptotic, cleaved caspase 3 positive, epithelial cells in Tollip-deficient compared to WT mice. Chronic colitis was also affected by Tollip deficiency as Tollip/IL-10 deficient mice had more severe histological stigmata of colitis and higher IL-17 expression than IL-10 deficient controls. CONCLUSION: Tollip in non-hematopoietic cells is critical for adequate response to a chemical-induced stress in the gut and to hamper chronic bacteria-driven colitis. Modulation of epithelial cell integrity via Tollip likely contributes to the observed defects.
Resumo:
1. The gene Pgm-3 (or a closely linked gene) influences the phenotype and reproductive success of queens in multiple-queen (polygynous) colonies but not single-queen (monogynous) colonies of the Fire Ant Solenopsis invicta. 2. We investigated the mechanisms of differential phenotypic expression of Pgm-3 in these alternate social forms. Mature winged queens with the homozygous genotype Pgm-3(a/a) averaged 26% heavier than queens with the genotypes Pgm-3(a/b) and Pgm 3(b/b) in the polygynous form. Heterozygotes were slightly heavier (2%) than Pgm-3(b/b) queens in this form, demonstrating that the allele Pgm-3(a) is not completely recessive in its effects on weight. 3. There was no significant difference in weight among queens of the three Pgm-3 genotypes in the monogynous form, with the mean weight of monogynous queens slightly greater than that of polygynous Pgm-3(a/a) queens. Differences in weight between queens of the two social forms and among queens of the three genotypes in the polygynous form are not evident at the pupal stage and thus appear to develop during sexual maturation of the adults. This suggests that some component of the social environment of polygynous colonies inhibits weight gains during queen maturation and that Pgm-(3a/a) queens are relatively less sensitive to this factor. 4. To test whether the high cumulative queen pheromone level characteristic of polygynous colonies is the factor responsible for the differential queen maturation, we compared phenotypes of winged queens reared in split colonies in which pheromone levels were manipulated by adjusting queen number. Queens produced in colony fragments made monogynous were heavier than those produced in polygynous fragments, a finding consistent with the hypothesis that pheromone level affects the reproductive development of queens. However, genotype-specific differences in weights of queens were similar between the two treatments, suggesting that pheromone level was not the key factor of the social environment responsible for the gene-environment interaction. 5. To test whether limited food availability to winged queens associated with the high brood/worker ratios in polygynous colonies is the factor responsible for this interaction, similar split-colony experiments were performed. Elevated brood/worker ratios decreased the weight of winged queens but there was no evidence that this treatment intensified differential weight gains among queens with different Pgm-3 genotypes. Manipulation of the amount of food provided to colonies had no effect on queen weight. 6. The combined data indicate that cumulative pheromone level and brood/worker ratio are two of the factors responsible for the differences in reproductive phenotypes between monogynous and polygynous winged queens but that these factors are not directly responsible for inducing the phenotypic effects of Pgm-3 in polygynous colonies.
Resumo:
Copy-number variants (CNVs) represent a significant interpretative challenge, given that each CNV typically affects the dosage of multiple genes. Here we report on five individuals with coloboma, microcephaly, developmental delay, short stature, and craniofacial, cardiac, and renal defects who harbor overlapping microdeletions on 8q24.3. Fine mapping localized a commonly deleted 78 kb region that contains three genes: SCRIB, NRBP2, and PUF60. In vivo dissection of the CNV showed discrete contributions of the planar cell polarity effector SCRIB and the splicing factor PUF60 to the syndromic phenotype, and the combinatorial suppression of both genes exacerbated some, but not all, phenotypic components. Consistent with these findings, we identified an individual with microcephaly, short stature, intellectual disability, and heart defects with a de novo c.505C>T variant leading to a p.His169Tyr change in PUF60. Functional testing of this allele in vivo and in vitro showed that the mutation perturbs the relative dosage of two PUF60 isoforms and, subsequently, the splicing efficiency of downstream PUF60 targets. These data inform the functions of two genes not associated previously with human genetic disease and demonstrate how CNVs can exhibit complex genetic architecture, with the phenotype being the amalgam of both discrete dosage dysfunction of single transcripts and also of binary genetic interactions.
Resumo:
Extensive population-based genome-wide association studies have identified an association between the FTO gene and BMI; however, the mechanism of action is still unknown. To determine whether FTO may influence weight regulation through psychological and behavioral factors, seven single-nucleotide polymorphisms (SNPs) of the FTO gene were genotyped in 1,085 individuals with anorexia nervosa (AN) and 677 healthy weight controls from the international Price Foundation Genetic Studies of Eating Disorders. Each SNP was tested in association with eating disorder phenotypes and measures that have previously been associated with eating behavior pathology: trait anxiety, harm-avoidance, novelty seeking, impulsivity, obsessionality, compulsivity, and concern over mistakes. After appropriate correction for multiple comparisons, no significant associations between individual FTO gene SNPs and eating disorder phenotypes or related eating behavior pathology were identified in cases or controls. Thus, this study found no evidence that FTO gene variants associated with weight regulation in the general population are associated with eating disorder phenotypes in AN participants or matched controls. © 2011 Wiley-Liss, Inc.
Resumo:
A significant number of environmental microorganisms can cause serious, even fatal, acute and chronic infections in humans. The severity and outcome of each type of infection depends on the expression of specific bacterial phenotypes controlled by complex regulatory networks that sense and respond to the host environment. Although bacterial signals that contribute to a successful acute infection have been identified in a number of pathogens, the signals that mediate the onset and establishment of chronic infections have yet to be discovered. We identified a volatile, low molecular weight molecule, 2-amino acetophenone (2-AA), produced by the opportunistic human pathogen Pseudomonas aeruginosa that reduces bacterial virulence in vivo in flies and in an acute mouse infection model. 2-AA modulates the activity of the virulence regulator MvfR (multiple virulence factor regulator) via a negative feedback loop and it promotes the emergence of P. aeruginosa phenotypes that likely promote chronic lung infections, including accumulation of lasR mutants, long-term survival at stationary phase, and persistence in a Drosophila infection model. We report for the first time the existence of a quorum sensing (QS) regulated volatile molecule that induces bistability phenotype by stochastically silencing acute virulence functions in P. aeruginosa. We propose that 2-AA mediates changes in a subpopulation of cells that facilitate the exploitation of dynamic host environments and promote gene expression changes that favor chronic infections.