201 resultados para Improves
Resumo:
Our aim was to evaluate the role of forced diuresis in improving the diagnostic accuracy of abdominopelvic (18)F-FDG PET. METHODS: Thirty-two patients were enrolled. Besides the presence of known intravesical tumors or undefined renal lesions on the initial PET scan, the inclusion criterion was the appearance of indeterminate or equivocal (18)F-FDG foci that extended along the course of the urinary tract and could not confidently be separated from urinary activity. For each patient, a second abdominopelvic PET study was performed after intravenous injection of 0.5 mg of furosemide per kilogram of body weight (maximum, 40 mg) coupled with parenteral infusion of physiologic saline. RESULTS: Forced diuresis coupled with parenteral hydration eliminated any significant (18)F-FDG activity from the lower urinary tract in 31 (97%) of 32 patients after the bladder had been voided 3 successive times. Twelve intravesical lesions were visualized with outstanding clarity, whereas radiologic suspicion of locally recurrent bladder tumors was ruled out in 3 patients. Among 14 indeterminate or equivocal extravesical foci, 7 were deemed of no clinical value because they disappeared after furosemide challenge, whereas 7 persisting foci were proven to be true-positive PET findings. The performance of (18)F-FDG PET in characterizing 3 renal-space-occupying lesions could not be improved by our protocol. CONCLUSION: Furosemide challenge has the potential to noninvasively resolve the inherent (18)F-FDG contrast handicap in the lower urinary tract.
Resumo:
Obesity and insulin resistance represent a problem of utmost clinical significance worldwide. Insulin-resistant states are characterized by the inability of insulin to induce proper signal transduction leading to defective glucose uptake in skeletal muscle tissue and impaired insulin-induced vasodilation. In various pathophysiological models, melatonin interacts with crucial molecules of the insulin signaling pathway, but its effects on glucose homeostasis are not known. In a diet-induced mouse model of insulin resistance and normal chow-fed control mice, we sought to assess the effects of an 8-wk oral treatment with melatonin on insulin and glucose tolerance and to understand underlying mechanisms. In high-fat diet-fed mice, but not in normal chow-fed control mice, melatonin significantly improved insulin sensitivity and glucose tolerance, as evidenced by a higher rate of glucose infusion to maintain euglycemia during hyperinsulinemic clamp studies and an attenuated hyperglycemic response to an ip glucose challenge. Regarding underlying mechanisms, we found that melatonin restored insulin-induced vasodilation to skeletal muscle, a major site of glucose utilization. This was due, at least in part, to the improvement of insulin signal transduction in the vasculature, as evidenced by increased insulin-induced phosphorylation of Akt and endoethelial nitric oxide synthase in aortas harvested from melatonin-treated high-fat diet-fed mice. In contrast, melatonin had no effect on the ability of insulin to promote glucose uptake in skeletal muscle tissue in vitro. These data demonstrate for the first time that in a diet-induced rodent model of insulin resistance, melatonin improves glucose homeostasis by restoring the vascular action of insulin.
Resumo:
AIM: Intensified insulin therapy has evolved to be the standard treatment of type 1 diabetes. However, it has been reported to increase significantly the risk of hypoglycaemia. We studied the effect of structured group teaching courses in flexible insulin therapy (FIT) on psychological and metabolic parameters in patients with type 1 diabetes. METHODS: We prospectively followed 45 type 1 diabetic patients of our outpatient clinic participating in 5 consecutive FIT teaching courses at the University Hospital of Basel. These courses consist of 7 weekly ambulatory evening group sessions. Patients were studied before and 1, 6, and 18 months after the course. Main outcome measures were glycated haemoglobin (HbA1c), severe hypoglycaemic events, quality of life (DQoL), diabetes self-control (IPC-9) and diabetes knowledge (DWT). RESULTS: Quality of life, self-control and diabetes knowledge improved after the FIT courses (all p<0.001). The frequency of severe hypoglycaemic events decreased ten-fold from 0.33 episodes/6 months at baseline to 0.03 episodes/6 months after 18 months (p<0.05). Baseline HbA1c was 7.2+/-1.1% and decreased in the subgroup with HbA1c > or = 8% from 8.4% to 7.8% (p<0.05). CONCLUSIONS: In an unselected, but relatively well-controlled population of type 1 diabetes, a structured, but not very time consuming FIT teaching programme in the outpatient setting improves psychological well-being and metabolic parameters.
Resumo:
Positron emission tomography with [18F] fluorodeoxyglucose (FDG-PET) plays a well-established role in assisting early detection of frontotemporal lobar degeneration (FTLD). Here, we examined the impact of intensity normalization to different reference areas on accuracy of FDG-PET to discriminate between patients with mild FTLD and healthy elderly subjects. FDG-PET was conducted at two centers using different acquisition protocols: 41 FTLD patients and 42 controls were studied at center 1, 11 FTLD patients and 13 controls were studied at center 2. All PET images were intensity normalized to the cerebellum, primary sensorimotor cortex (SMC), cerebral global mean (CGM), and a reference cluster with most preserved FDG uptake in the aforementioned patients group of center 1. Metabolic deficits in the patient group at center 1 appeared 1.5, 3.6, and 4.6 times greater in spatial extent, when tracer uptake was normalized to the reference cluster rather than to the cerebellum, SMC, and CGM, respectively. Logistic regression analyses based on normalized values from FTLD-typical regions showed that at center 1, cerebellar, SMC, CGM, and cluster normalizations differentiated patients from controls with accuracies of 86%, 76%, 75% and 90%, respectively. A similar order of effects was found at center 2. Cluster normalization leads to a significant increase of statistical power in detecting early FTLD-associated metabolic deficits. The established FTLD-specific cluster can be used to improve detection of FTLD on a single case basis at independent centers - a decisive step towards early diagnosis and prediction of FTLD syndromes enabling specific therapies in the future.
Resumo:
Critical illness is characterised by nutritional and metabolic disorders, resulting in increased muscle catabolism, fat-free mass loss, and hyperglycaemia. The objective of the nutritional support is to limit fat-free mass loss, which has negative consequences on clinical outcome and recovery. Early enteral nutrition is recommended by current guidelines as the first choice feeding route in ICU patients. However, enteral nutrition alone is frequently associated with insufficient coverage of the energy requirements, and subsequently energy deficit is correlated to worsened clinical outcome. Controlled trials have demonstrated that, in case of failure or contraindications to full enteral nutrition, parenteral nutrition administration on top of insufficient enteral nutrition within the first four days after admission could improve the clinical outcome, and may attenuate fat-free mass loss. Parenteral nutrition is cautious if all-in-one solutions are used, glycaemia controlled, and overnutrition avoided. Conversely, the systematic use of parenteral nutrition in the ICU patients without clear indication is not recommended during the first 48 hours. Specific methods, such as thigh ultra-sound imaging, 3rd lumbar vertebra-targeted computerised tomography and bioimpedance electrical analysis, may be helpful in the future to monitor fat-free mass during the ICU stay. Clinical studies are warranted to demonstrate whether an optimal nutritional management during the ICU stay promotes muscle mass and function, the recovery after critical illness and reduces the overall costs.
Resumo:
BACKGROUND: The excess in cardiovascular risk in patients with rheumatoid arthritis provides a strong rationale for early therapeutical interventions. In view of the similarities between atherosclerosis and rheumatoid arthritis and the proven benefit of angiotensin-converting enzyme inhibitors in atherosclerotic vascular disease, it was the aim of the present study to delineate the impact of ramipril on endothelial function as well as on markers of inflammation and oxidative stress in patients with rheumatoid arthritis. METHODS AND RESULTS: Eleven patients with rheumatoid arthritis were included in this randomized, double-blind, crossover study to receive ramipril in an uptitration design (2.5 to 10 mg) for 8 weeks followed by placebo, or vice versa, on top of standard antiinflammatory therapy. Endothelial function assessed by flow-mediated dilation of the brachial artery, markers of inflammation and oxidative stress, and disease activity were investigated at baseline and after each treatment period. Endothelial function assessed by flow-mediated dilation increased from 2.85+/-1.49% to 4.00+/-1.81% (P=0.017) after 8 weeks of therapy with ramipril but did not change with placebo (from 2.85+/-1.49% to 2.84+/-2.47%; P=0.88). Although systolic blood pressure and heart rate remained unaltered, diastolic blood pressure decreased slightly from 78+/-7 to 74+/-6 mm Hg (P=0.03). Tumor necrosis factor-alpha showed a significant inverse correlation with flow-mediated dilation (r=-0.408, P=0.02), and CD40 significantly decreased after ramipril therapy (P=0.049). CONCLUSIONS: Angiotensin-converting enzyme inhibition with 10 mg/d ramipril for 8 weeks on top of current antiinflammatory treatment markedly improved endothelial function in patients with rheumatoid arthritis. This finding suggests that angiotensin-converting enzyme inhibition may provide a novel strategy to prevent cardiovascular events in these patients.
Resumo:
Recently, rapid and transient cardiac pacing was shown to induce preconditioning in animal models. Whether the electrical stimulation per se or the concomitant myocardial ischemia affords such a protection remains unknown. We tested the hypothesis that chronic pacing of a cardiac preparation maintained in a normoxic condition can induce protection. Hearts of 4-day-old chick embryos were electrically paced in ovo over a 12-h period using asynchronous and intermittent ventricular stimulation (5 min on-10 min off) at 110% of the intrinsic rate. Sham (n = 6) and paced hearts (n = 6) were then excised, mounted in vitro, and subjected successively to 30 min of normoxia (20% O(2)), 30 min of anoxia (0% O(2)), and 60 min of reoxygenation (20% O(2)). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout the experiment. Reoxygenation-induced chrono-, dromo-, and inotropic disturbances, incidence of arrhythmias, and changes in electromechanical delay (EMD) in atria and ventricle were systematically investigated in sham and paced hearts. Under normoxia, the isolated heart beat spontaneously and regularly, and all baseline functional parameters were similar in sham and paced groups (means +/- SD): heart rate (190 +/- 36 beats/min), P-R interval (104 +/- 25 ms), mechanical atrioventricular propagation (20 +/- 4 mm/s), ventricular shortening velocity (1.7 +/- 1 mm/s), atrial EMD (17 +/- 4 ms), and ventricular EMD (16 +/- 2 ms). Under anoxia, cardiac function progressively collapsed, and sinoatrial activity finally stopped after approximately 9 min in both groups. During reoxygenation, paced hearts showed 1) a lower incidence of arrhythmias than sham hearts, 2) an increased rate of recovery of ventricular contractility compared with sham hearts, and 3) a faster return of ventricular EMD to basal value than sham hearts. However, recovery of heart rate, atrioventricular conduction, and atrial EMD was not improved by pacing. Activity of all hearts was fully restored at the end of reoxygenation. These findings suggest that chronic electrical stimulation of the ventricle at a near-physiological rate selectively alters some cellular functions within the heart and constitutes a nonischemic means to increase myocardial tolerance to a subsequent hypoxia-reoxygenation.
Resumo:
betaTC-tet cells are conditionally immortalized pancreatic beta cells which can confer long-term correction of hyperglycemia when transplanted in syngeneic streptozocin diabetic mice. The use of these cells for control of type I diabetes in humans will require their encapsulation and transplantation in non-native sites where relative hypoxia and cytokines may threaten their survival. In this study we genetically engineered betaTC-tet cells with the anti-apoptotic gene Bcl-2 using new lentiviral vectors and showed that it protected this cell line against apoptosis induced by hypoxia, staurosporine and a mixture of cytokines (IL-1beta, IFN-gamma and TNF-alpha). We further demonstrated that Bcl-2 expression permitted growth at higher cell density and with shorter doubling time. Expression of Bcl-2, however, did not inter- fere either with the intrinsic mechanism of growth arrest present in the betaTC-tet cells or with their normal glucose dose-dependent insulin secretory activity. Furthermore, Bcl-2 expressing betaTC-tet cells retained their capacity to secrete insulin under mild hypoxia. Finally, transplantation of these cells under the kidney capsule of streptozocin diabetic C3H mice corrected hyperglycemia for several months. These results demonstrate that the murine betaTC-tet cell line can be genetically modified to improve its resistance against different stress-induced apoptosis while preserving its normal physiological function. These modified cells represent an improved source for cell transplantation therapy of type I diabetes.
Resumo:
Newer chemotherapeutic protocols as well as high-dose chemotherapy have increased the response rate in myeloma. However, these treatments are not curative. Effective maintenance strategies are now required to prolong the duration of response. We conducted a randomized trial of maintenance treatment with thalidomide and pamidronate. Two months after high-dose therapy, 597 patients younger than age 65 years were randomly assigned to receive no maintenance (arm A), pamidronate (arm B), or pamidronate plus thalidomide (arm C). A complete or very good partial response was achieved by 55% of patients in arm A, 57% in arm B, and 67% in arm C (P = .03). The 3-year postrandomization probability of event-free survival was 36% in arm A, 37% in arm B, and 52% in arm C (P < .009). The 4-year postdiagnosis probability of survival was 77% in arm A, 74% in arm B, and 87% in arm C (P < .04). The proportion of patients who had skeletal events was 24% in arm A, 21% in arm B, and 18% in arm C (P = .4). Thalidomide is an effective maintenance therapy in patients with multiple myeloma. Maintenance treatment with pamidronate does not decrease the incidence of bone events.
Resumo:
Repeated passaging in conventional cell culture reduces pluripotency and proliferation capacity of human mesenchymal stem cells (MSC). We introduce an innovative cell culture method whereby the culture surface is dynamically enlarged during cell proliferation. This approach maintains constantly high cell density while preventing contact inhibition of growth. A highly elastic culture surface was enlarged in steps of 5% over the course of a 20-day culture period to 800% of the initial surface area. Nine weeks of dynamic expansion culture produced 10-fold more MSC compared with conventional culture, with one-third the number of trypsin passages. After 9 weeks, MSC continued to proliferate under dynamic expansion but ceased to grow in conventional culture. Dynamic expansion culture fully retained the multipotent character of MSC, which could be induced to differentiate into adipogenic, chondrogenic, osteogenic, and myogenic lineages. Development of an undesired fibrogenic myofibroblast phenotype was suppressed. Hence, our novel method can rapidly provide the high number of autologous, multipotent, and nonfibrogenic MSC needed for successful regenerative medicine.
Resumo:
The generation of a high productivity cell line is a critical step in the production of a therapeutic protein. Many innovative engineering strategies have been devised in order to maximize the expression rate of production cells for increased process efficiency. Less effort has focused on improvements to the cell line generation process, which is typically long and laborious when using mammalian cells. Based on unexpected findings when generating stable CHO cell lines expressing human IL-17F, we studied the benefit of expressing this protein during the establishment of production cell lines. We demonstrate that IL-17F expression enhances the rate of selection and overall number of selected cell lines as well as their transgene expression levels. We also show that this benefit is observed with different parental CHO cell lines and selection systems. Furthermore, IL-17F expression improves the efficiency of cell line subcloning processes. IL-17F can therefore be exploited in a standard manufacturing process to obtain higher productivity clones in a reduced time frame.
Resumo:
BACKGROUND: The optimal strategy for percutaneous coronary intervention (PCI) of ST-segment elevation myocardial infarction (STEMI) in multi-vessel disease (MVD), i.e., multi-vessel PCI (MV-PCI) vs. PCI of the infarct-related artery only (IRA-PCI), still remains unknown. METHODS: Patients of the AMIS Plus registry admitted with an acute coronary syndrome were contacted after a median of 378 days (interquartile range 371-409). The primary end-point was all-cause death. The secondary end-point included all major adverse cardiovascular and cerebrovascular events (MACCE) including death, re-infarction, re-hospitalization for cardiac causes, any cardiac re-intervention, and stroke. RESULTS: Between 2005 and 2012, 8330 STEMI patients were identified, of whom 1909 (24%) had MVD. Of these, 442 (23%) received MV-PCI and 1467 (77%) IRA-PCI. While all-cause mortality was similar in both groups (2.7% both, p>0.99), MACCE was significantly lower after MV-PCI vs. IRA-PCI (15.6% vs. 20.0%, p=0.038), mainly driven by lower rates of cardiac re-hospitalization and cardiac re-intervention. Patients undergoing MV-PCI with drug-eluting stents had lower rates of all-cause mortality (2.1% vs. 7.4%, p=0.026) and MACCE (14.1% vs. 25.9%, p=0.042) compared with those receiving bare metal stents (BMS). In multivariate analysis, MV-PCI (odds ratio, OR 0.69, 95% CI 0.51-0.93, p=0.017) and comorbidities (Charlson index ≥ 2; OR 1.42, 95% CI 1.05-1.92, p=0.025) were independent predictors for 1-year MACCE. CONCLUSION: In an unselected nationwide real-world cohort, an approach using immediate complete revascularization may be beneficial in STEMI patients with MVD regarding MACCE, specifically when drug-eluting stents are used, but not regarding mortality. This has to be tested in a randomized controlled trial.
Resumo:
Objective: Cooling is considered a panacea in burn injury. However, burn injuries are characterized by an ischemic zone prone to progression, a phenomenon that can substantially increase morbidity. Cold-induced vasoconstriction potentially aggravates ischemia and promotes progression. Therefore we compared the effect of warm (37°C) and cold (17°C) water on burn progression. Methods: The comb burn model creates 4 rectangular burned surfaces separated by 3 unburned interspaces that become necrotic if untreated. After heating in boiling water the template was applied for 60 seconds on 24 Wistar rats randomized into 3 groups: no treatment (CON); treatment for 20 minutes with cold water (17°C: CW) or warm water (37°C: WW). Burn progression in surface (planimetry) and Departmenth (histology), as well as microcirculatory perfusion (laser Doppler flowmetry) were assessed after 1h, as well as 1, 4, and 7 days. Results: Both CW and WW delayed burn progression without reducing the final burn Departmenth (deep dermis). In contrast, only WW but not CW increased dermal perfusion (81 ± 2% (WW) vs. 62 ± 2% (CW) and 63 ± 1% (CON), p< 0·05) already 1 hour after burn induction. The difference observed after one hour led to a complete flow recovery during the observation period and translated into increased interspace survival, respectively less necrosis with WW(65 ± 4% vs. 81 + 4% (CW) and 91 ± 2% (CON), p< 0·05) after 7 days. Conclusions: Application of warm water significantly improved dermal perfusion, increased interspace survival, and delayed burn progression.However it didn't alter the ultimate burn Departmenth of the actually burned area. Therefore, warm water can create a therapeutic window for targeted nonsurgical treatment of burn progression.