131 resultados para Implantable Collamer lens
Resumo:
An implantable cardiac defibrillator (ICD) is a cardiac implantable electronic device that is capable of identifying and treating ventricular arrhythmias. Consideration about the type of ICD to select for a given patient include whether the patient has bradycardia requiring pacing support, has associated atrial tachyarrhythmias, or would benefit from cardiac resynchronization therapy. The ICD functions by continuously monitoring the patient's cardiac rate and delivering therapies (anti-tachycardia pacing, shocks) when the rate exceeds the programmed rate "cutoff". Secondary prevention trials have demonstrated that ICDs reduce the incidence of arrhythmic death and total mortality in patients presenting with a cardiac arrest. ICDs are also indicated for primary prevention of sudden cardiac death in specific high-risk subgroups of patients.
Resumo:
The implantable loop recorder developed by Medtronic (Reveal plus) is a small device inserted subcutaneously under local anesthesia in patients with syncope of unexplained origin. This device enables a single lead-ECG recording and has autonomy of two years. Memories are activated during episodes of bradycardia or tachycardia, either automatically or manually. Several studies have shown a high diagnostic rate reaching 50% and demonstrated its cost-effectiveness. There is also a significant reduction in syncopal episodes and a higher quality of life score in patients with syncope of unexplained origin.
Resumo:
PURPOSE: To localize collagen types I, III, and IV, laminin and fibronectin in the anterior human lens capsule. MATERIAL AND METHODS: Twenty-one anterior capsules were sampled by capsulorhexis during extracapsular cataract extraction (mean age 71.5). All capsules were labelled by an immunostaining specific for each antibodies. Immunostaining of four capsules was revealed with immunoperoxydase and seventeen using indirect immunofluorescence. RESULTS: Labelling of collagen types I and III was observed throughout the entire thickness of the capsule for each technique, the strongest labelling was found in the base of the epithelial cells with immunofluorescence. Collagen type IV was observed at the base of the epithelial cells whichever technique was used. Laminin could be detected in the inner layer of the capsule, using immunoperoxydase or immunofluorescence. No specific labelling was found for fibronectin using the two techniques. CONCLUSIONS: Different kinds of collagens have been found in capsules, more particularly the type III. The latter does not appear on other ocular basement membrane. Because of this uneven distribution in the capsule's thickness, each collagen might have a specific function.
Resumo:
BACKGROUND: Magnetic resonance imaging (MRI) of patients with conventional implantable cardioverter-defibrillators (ICD) is contraindicated. OBJECTIVES: This multicenter, randomized trial evaluated safety and efficacy of a novel ICD system specially designed for full-body MRI without restrictions on heart rate or pacing dependency. The primary safety objective was >90% freedom from MRI-related events composite endpoint within 30 days post-MRI. The primary efficacy endpoints were ventricular pacing capture threshold and ventricular sensing amplitude. METHODS: Subjects received either a single- or dual-chamber ICD. In a 2:1 randomization, subjects either underwent MRI at 1.5-T of the chest, cervical, and head regions to maximize radiofrequency exposure up to 2 W/kg specific absorption rate and gradient field exposure to 200 T/m/s per axis (MRI group, n = 175), or they underwent a 1-h waiting period without MRI (control group, n = 88). A subset of MRI patients underwent ventricular fibrillation induction testing post-MRI to characterize defibrillation function. RESULTS: In 42 centers, 275 patients were enrolled (76% male, age 60.4 ± 13.8 years). The safety endpoint was met with 100% freedom from the composite endpoint (p < 0.0001). Both efficacy endpoints were met with minimal differences in the proportion of MRI and control patients who demonstrated a ≤0.5 V increase in ventricular pacing capture threshold (100% MRI vs. 98.8% control, noninferiority p < 0.0001) or a ≤50% decrease in R-wave amplitude (99.3% MRI vs. 98.8% control, noninferiority p = 0.0001). A total of 34 ventricular tachyarrhythmia/ventricular fibrillation episodes (20 induced; 14 spontaneous) occurred in 24 subjects post-MRI, with no observed effect on sensing, detection, or treatment. CONCLUSIONS: This is the first randomized clinical study of an ICD system designed for full-body MRI at 1.5-T. These data support that the system is safe and the MRI scan does not adversely affect electrical performance or efficacy. (Confirmatory Clinical Trial of the Evera MRI System for Conditionally-Safe MRI Access; NCT02117414).
Resumo:
A thorough literature review about the current situation on the implementation of eye lens monitoring has been performed in order to provide recommendations regarding dosemeter types, calibration procedures and practical aspects of eye lens monitoring for interventional radiology personnel. Most relevant data and recommendations from about 100 papers have been analysed and classified in the following topics: challenges of today in eye lens monitoring; conversion coefficients, phantoms and calibration procedures for eye lens dose evaluation; correction factors and dosemeters for eye lens dose measurements; dosemeter position and influence of protective devices. The major findings of the review can be summarised as follows: the recommended operational quantity for the eye lens monitoring is H p (3). At present, several dosemeters are available for eye lens monitoring and calibration procedures are being developed. However, in practice, very often, alternative methods are used to assess the dose to the eye lens. A summary of correction factors found in the literature for the assessment of the eye lens dose is provided. These factors can give an estimation of the eye lens dose when alternative methods, such as the use of a whole body dosemeter, are used. A wide range of values is found, thus indicating the large uncertainty associated with these simplified methods. Reduction factors from most common protective devices obtained experimentally and using Monte Carlo calculations are presented. The paper concludes that the use of a dosemeter placed at collar level outside the lead apron can provide a useful first estimate of the eye lens exposure. However, for workplaces with estimated annual equivalent dose to the eye lens close to the dose limit, specific eye lens monitoring should be performed. Finally, training of the involved medical staff on the risks of ionising radiation for the eye lens and on the correct use of protective systems is strongly recommended.
Resumo:
Concomitant aortic and mitral valve replacement or concomitant aortic valve replacement and mitral repair can be a challenge for the cardiac surgeon: in particular, because of their structure and design, two bioprosthetic heart valves or an aortic valve prosthesis and a rigid mitral ring can interfere at the level of the mitroaortic junction. Therefore, when a mitral bioprosthesis or a rigid mitral ring is already in place and a surgical aortic valve replacement becomes necessary, or when older high-risk patients require concomitant mitral and aortic procedures, the new 'fast-implantable' aortic valve system (Intuity valve, Edwards Lifesciences, Irvine, CA, USA) can represent a smart alternative to standard aortic bioprosthesis. Unfortunately, this is still controversial (risk of interference). However, transcatheter aortic valve replacements have been performed in patients with previously implanted mitral valves or mitral rings. Interestingly, we learned that there is no interference (or not significant interference) among the standard valve and the stent valve. Consequently, we can assume that a fast-implantable valve can also be safely placed next to a biological mitral valve or next to a rigid mitral ring without risks of distortion, malpositioning, high gradient or paravalvular leak. This paper describes two cases: a concomitant Intuity aortic valve and bioprosthetic mitral valve implantation and a concomitant Intuity aortic valve and mitral ring implantation.
Resumo:
BACKGROUND: Up to 60% of syncopal episodes remain unexplained. We report the results of a standardized, stepwise evaluation of patients referred to an ambulatory clinic for unexplained syncope. METHODS AND RESULTS: We studied 939 consecutive patients referred for unexplained syncope, who underwent a standardized evaluation, including history, physical examination, electrocardiogram, head-up tilt testing (HUTT), carotid sinus massage (CSM) and hyperventilation testing (HYV). Echocardiogram and stress test were performed when underlying heart disease was initially suspected. Electrophysiological study (EPS) and implantable loop recorder (ILR) were used only in patients with underlying structural heart disease or major unexplained syncope. We identified a cause of syncope in 66% of patients, including 27% vasovagal, 14% psychogenic, 6% arrhythmias, and 6% hypotension. Noninvasive testing identified 92% and invasive testing an additional 8% of the causes. HUTT yielded 38%, CSM 28%, HYV 49%, EPS 22%, and ILR 56% of diagnoses. On average, patients with arrhythmic causes were older, had a lower functional capacity, longer P-wave duration, and presented with fewer prodromes than patients with vasovagal or psychogenic syncope. CONCLUSIONS: A standardized stepwise evaluation emphasizing noninvasive tests yielded 2/3 of causes in patients referred to an ambulatory clinic for unexplained syncope. Neurally mediated and psychogenic mechanisms were behind >50% of episodes, while cardiac arrhythmias were uncommon. Sudden syncope, particularly in older patients with functional limitations or a prolonged P-wave, suggests an arrhythmic cause.
Resumo:
Pharmacogenomics is a field with origins in the study of monogenic variations in drug metabolism in the 1950s. Perhaps because of these historical underpinnings, there has been an intensive investigation of 'hepatic pharmacogenes' such as CYP450s and liver drug metabolism using pharmacogenomics approaches over the past five decades. Surprisingly, kidney pathophysiology, attendant diseases and treatment outcomes have been vastly under-studied and under-theorized despite their central importance in maintenance of health, susceptibility to disease and rational personalized therapeutics. Indeed, chronic kidney disease (CKD) represents an increasing public health burden worldwide, both in developed and developing countries. Patients with CKD suffer from high cardiovascular morbidity and mortality, which is mainly attributable to cardiovascular events before reaching end-stage renal disease. In this paper, we focus our analyses on renal function before end-stage renal disease, as seen through the lens of pharmacogenomics and human genomic variation. We herein synthesize the recent evidence linking selected Very Important Pharmacogenes (VIP) to renal function, blood pressure and salt-sensitivity in humans, and ways in which these insights might inform rational personalized therapeutics. Notably, we highlight and present the rationale for three applications that we consider as important and actionable therapeutic and preventive focus areas in renal pharmacogenomics: 1) ACE inhibitors, as a confirmed application, 2) VDR agonists, as a promising application, and 3) moderate dietary salt intake, as a suggested novel application. Additionally, we emphasize the putative contributions of gene-environment interactions, discuss the implications of these findings to treat and prevent hypertension and CKD. Finally, we conclude with a strategic agenda and vision required to accelerate advances in this under-studied field of renal pharmacogenomics with vast significance for global public health.
Resumo:
Intravitreal administration has been widely used since 20 years and has been shown to improve the treatment of diseases of the posterior segment of the eye with infectious origin or in edematous maculopathies. This route of administration allows to achieve high concentration of drug in the vitreous and avoids the problems resulting from systemic administration. However, two basic problems limit the use of intravitreal therapy. Many drugs are rapidly cleared from the vitreous humor; therefore, to reach and to maintain effective therapy repeated injections are necessary. Repeated intravitreal injections increase the risk of endophthalmitis, damage to lens, retinal detachment. Moreover, some drugs provoke a local toxicity at their effective dose inducing side-effects and possible retinal lesions. In this context, the development and the use of new drug delivery systems for intravitreal administration are necessary to treat chronic ocular diseases. Among them, particulate systems such as liposomes have been widely studied. Liposomes are easily injectable and permit to reduce the toxicity and to increase the residence time of several drugs in the eye. They are also able to protect in vivo poorly-stable molecules from degradation such as peptides and nucleic acids. Some promising results have been obtained for the treatment of retinitis induced by cytomegalovirus in human and more recently for the treatment of uveitis in animal. Finally, the fate of liposomes in ocular tissues and fluids after their injection into the vitreous and their elimination routes begin to be more known.
Resumo:
Introduced in 2008, the femtosecond laser is a promising new technological advance which plays an ever increasing role in cataract surgery where it automates the three main surgical steps: corneal incision, capsulotomy and lens fragmentation. The proven advantages over manual surgery are: a better quality of incision with reduced induced astigmatism; increased reliability and reproducibility of the capsulotomy with increased stability of the implanted lens; a reduction in the use of ultrasound. Regarding refractive results or safety, however, no prospective randomized study to date has shown significant superiority compared with standard manual technique. The significant extra cost generated by this laser, undertaken by the patient, is a limiting factor for both its use and study. This review outlines the potential benefits of femtosecond-laser-assisted cataract surgery due to the automation of key steps and the safety of this new technology.
Resumo:
PIKfyve is a kinase encoded by pip5k3 involved in phosphatidylinositols (PdtIns) pathways. These lipids building cell membranes have structural functions and are involved in complex intracellular regulations. Mutations in human PIP5K3 are associated with François-Neetens mouchetée fleck corneal dystrophy [Li, S., Tiab, L., Jiao, X., Munier, F.L., Zografos, L., Frueh, B.E., Sergeev, Y., Smith, J., Rubin, B., Meallet, M.A., Forster, R.K., Hejtmancik, J.F., Schorderet, D.F., 2005. Mutations in PIP5K3 are associated with François-Neetens mouchetee fleck corneal dystrophy. Am. J. Hum. Genet. 77, 54-63]. We cloned the zebrafish pip5k3 and report its molecular characterization and expression pattern in adult fish as well as during development. The zebrafish PIKfyve was 70% similar to the human homologue. The gene encompassed 42 exons and presented four alternatively spliced variants. It had a widespread expression in the adult organs and was localized in specific cell types in the eye as the cornea, lens, ganglion cell layer, inner nuclear layer and outer limiting membrane. Pip5k3 transcripts were detected in early cleavage stage embryos. Then it was uniformly expressed at 10 somites, 18 somites and 24 hpf. Its expression was then restricted to the head region at 48 hpf, 72 hpf and 5 dpf and partial expression was found in somites at 72 hpf and 5 dpf. In situ on eye sections at 3 dpf showed a staining mainly in lens, outer limiting membrane, inner nuclear layer and ganglion cell layer. A similar expression pattern was found in the eye at 5 dpf. A temporal regulation of the spliced variants was observed at 1, 3 and 5 dpf and they were also found in the adult eye.