159 resultados para Image quality perception


Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The Advisa MRI system is designed to safely undergo magnetic resonance imaging (MRI). Its influence on image quality is not well known. OBJECTIVE: To evaluate cardiac magnetic resonance (CMR) image quality and to characterize myocardial contraction patterns by using the Advisa MRI system. METHODS: In this international trial with 35 participating centers, an Advisa MRI system was implanted in 263 patients. Of those, 177 were randomized to the MRI group and 150 underwent MRI scans at the 9-12-week visit. Left ventricular (LV) and right ventricular (RV) cine long-axis steady-state free precession MR images were graded for quality. Signal loss along the implantable pulse generator and leads was measured. The tagging CMR data quality was assessed as the percentage of trackable tagging points on complementary spatial modulation of magnetization acquisitions (n=16) and segmental circumferential fiber shortening was quantified. RESULTS: Of all cine long-axis steady-state free precession acquisitions, 95% of LV and 98% of RV acquisitions were of diagnostic quality, with 84% and 93%, respectively, being of good or excellent quality. Tagging points were trackable from systole into early diastole (360-648 ms after the R-wave) in all segments. During RV pacing, tagging demonstrated a dyssynchronous contraction pattern, which was not observed in nonpaced (n = 4) and right atrial-paced (n = 8) patients. CONCLUSIONS: In the Advisa MRI study, high-quality CMR images for the assessment of cardiac anatomy and function were obtained in most patients with an implantable pacing system. In addition, this study demonstrated the feasibility of acquiring tagging data to study the LV function during pacing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Respiratory motion is a major source of artifacts in cardiac magnetic resonance imaging (MRI). Free-breathing techniques with pencil-beam navigators efficiently suppress respiratory motion and minimize the need for patient cooperation. However, the correlation between the measured navigator position and the actual position of the heart may be adversely affected by hysteretic effects, navigator position, and temporal delays between the navigators and the image acquisition. In addition, irregular breathing patterns during navigator-gated scanning may result in low scan efficiency and prolonged scan time. The purpose of this study was to develop and implement a self-navigated, free-breathing, whole-heart 3D coronary MRI technique that would overcome these shortcomings and improve the ease-of-use of coronary MRI. A signal synchronous with respiration was extracted directly from the echoes acquired for imaging, and the motion information was used for retrospective, rigid-body, through-plane motion correction. The images obtained from the self-navigated reconstruction were compared with the results from conventional, prospective, pencil-beam navigator tracking. Image quality was improved in phantom studies using self-navigation, while equivalent results were obtained with both techniques in preliminary in vivo studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the evaluation results of the methods submitted to Challenge US: Biometric Measurements from Fetal Ultrasound Images, a segmentation challenge held at the IEEE International Symposium on Biomedical Imaging 2012. The challenge was set to compare and evaluate current fetal ultrasound image segmentation methods. It consisted of automatically segmenting fetal anatomical structures to measure standard obstetric biometric parameters, from 2D fetal ultrasound images taken on fetuses at different gestational ages (21 weeks, 28 weeks, and 33 weeks) and with varying image quality to reflect data encountered in real clinical environments. Four independent sub-challenges were proposed, according to the objects of interest measured in clinical practice: abdomen, head, femur, and whole fetus. Five teams participated in the head sub-challenge and two teams in the femur sub-challenge, including one team who tackled both. Nobody attempted the abdomen and whole fetus sub-challenges. The challenge goals were two-fold and the participants were asked to submit the segmentation results as well as the measurements derived from the segmented objects. Extensive quantitative (region-based, distance-based, and Bland-Altman measurements) and qualitative evaluation was performed to compare the results from a representative selection of current methods submitted to the challenge. Several experts (three for the head sub-challenge and two for the femur sub-challenge), with different degrees of expertise, manually delineated the objects of interest to define the ground truth used within the evaluation framework. For the head sub-challenge, several groups produced results that could be potentially used in clinical settings, with comparable performance to manual delineations. The femur sub-challenge had inferior performance to the head sub-challenge due to the fact that it is a harder segmentation problem and that the techniques presented relied more on the femur's appearance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we propose a method for prospective motion correction in MRI using a novel image navigator module, which is triggered by a free induction decay (FID) navigator. Only when motion occurs, the image navigator is run and new positional information is obtained through image registration. The image navigator was specifically designed to match the impact on the magnetization and the acoustic noise of the host sequence. This detection-correction scheme was implemented for an MP-RAGE sequence and 5 healthy volunteers were scanned at 3T while performing various head movements. The correction performance was demonstrated through automated brain segmentation and an image quality index whose results are sensitive to motion artifacts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: The goal of the present study was to use a three-dimensional (3D) gradient echo volume in combination with a fat-selective excitation as a 3D motion navigator (3D FatNav) for retrospective correction of microscopic head motion during high-resolution 3D structural scans of extended duration. The fat excitation leads to a 3D image that is itself sparse, allowing high parallel imaging acceleration factors - with the additional advantage of a minimal disturbance of the water signal used for the host sequence. METHODS: A 3D FatNav was inserted into two structural protocols: an inversion-prepared gradient echo at 0.33 × 0.33 × 1.00 mm resolution and a turbo spin echo at 600 μm isotropic resolution. RESULTS: Motion estimation was possible with high precision, allowing retrospective motion correction to yield clear improvements in image quality, especially in the conspicuity of very small blood vessels. CONCLUSION: The highly accelerated 3D FatNav allowed motion correction with noticeable improvements in image quality, even for head motion which was small compared with the voxel dimensions of the host sequence. Magn Reson Med 75:1030-1039, 2016. © 2015 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intraoperative cardiac imaging plays a key role during transcatheter aortic valve replacement. In recent years, new techniques and new tools for improved image quality and virtual navigation have been proposed, in order to simplify and standardize stent valve positioning and implantation. But routine performance of the new techniques may require major economic investments or specific knowledge and skills and, for this reason, they may not be accessible to the majority of cardiac centres involved in transcatheter valve replacement projects. Additionally, they still require injections of contrast medium to obtain computed images. Therefore, we have developed and describe here a very simple and intuitive method of positioning balloon-expandable stent valves, which represents the evolution of the 'dumbbell' technique for echocardiography-guided transcatheter valve replacement without angiography. This method, based on the partial inflation of the balloon catheter during positioning, traps the crimped valve in the aortic valve orifice and, consequently, very near to the ideal landing zone. It does not require specific echocardiographic knowledge; it does not require angiographies that increase the risk of postoperative kidney failure in elderly patients, and it can be also performed in centres not equipped with a hybrid operating room.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To introduce a new k-space traversal strategy for segmented three-dimensional echo planar imaging (3D EPI) that encodes two partitions per radiofrequency excitation, effectively reducing the number excitations used to acquire a 3D EPI dataset by half. METHODS: The strategy was evaluated in the context of functional MRI applications for: image quality compared with segmented 3D EPI, temporal signal-to-noise ratio (tSNR) (the ability to detect resting state networks compared with multislice two-dimensional (2D) EPI and segmented 3D EPI, and temporal resolution (the ability to separate cardiac- and respiration-related fluctuations from the desired blood oxygen level-dependent signal of interest). RESULTS: Whole brain images with a nominal voxel size of 2 mm isotropic could be acquired with a temporal resolution under half a second using traditional parallel imaging acceleration up to 4× in the partition-encode direction and using novel data acquisition speed-up of 2× with a 32-channel coil. With 8× data acquisition speed-up in the partition-encode direction, 3D reduced excitations (RE)-EPI produced acceptable image quality without introduction of noticeable additional artifacts. Due to increased tSNR and better characterization of physiological fluctuations, the new strategy allowed detection of more resting state networks compared with multislice 2D-EPI and segmented 3D EPI. CONCLUSION: 3D RE-EPI resulted in significant increases in temporal resolution for whole brain acquisitions and in improved physiological noise characterization compared with 2D-EPI and segmented 3D EPI. Magn Reson Med 72:786-792, 2014. © 2013 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A nationwide survey was launched to investigate the use of fluoroscopy and establish national reference levels (RL) for dose-intensive procedures. The 2-year investigation covered five radiology and nine cardiology departments in public hospitals and private clinics, and focused on 12 examination types: 6 diagnostic and 6 interventional. A total of 1,000 examinations was registered. Information including the fluoroscopy time (T), the number of frames (N) and the dose-area product (DAP) was provided. The data set was used to establish the distributions of T, N and the DAP and the associated RL values. The examinations were pooled to improve the statistics. A wide variation in dose and image quality in fixed geometry was observed. As an example, the skin dose rate for abdominal examinations varied in the range of 10 to 45 mGy/min for comparable image quality. A wide variability was found for several types of examinations, mainly complex ones. DAP RLs of 210, 125, 80, 240, 440 and 110 Gy cm2 were established for lower limb and iliac angiography, cerebral angiography, coronary angiography, biliary drainage and stenting, cerebral embolization and PTCA, respectively. The RL values established are compared to the data published in the literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To evaluate the feasibility, determine the optimal b-value, and assess the utility of 3-T diffusion-weighted MR imaging (DWI) of the spine in differentiating benign from pathologic vertebral compression fractures.Methods and Materials: Twenty patients with 38 vertebral compression fractures (24 benign, 14 pathologic) and 20 controls (total: 23 men, 17 women, mean age 56.2years) were included from December 2010 to May 2011 in this IRB-approved prospective study. MR imaging of the spine was performed on a 3-T unit with T1-w, fat-suppressed T2-w, gadolinium-enhanced fat-suppressed T1-w and zoomed-EPI (2D RF excitation pulse combined with reduced field-of-view single-shot echo-planar readout) diffusion-w (b-values: 0, 300, 500 and 700s/mm2) sequences. Two radiologists independently assessed zoomed-EPI image quality in random order using a 4-point scale: 1=excellent to 4=poor. They subsequently measured apparent diffusion coefficients (ADCs) in normal vertebral bodies and compression fractures, in consensus.Results: Lower b-values correlated with better image quality scores, with significant differences between b=300 (mean±SD=2.6±0.8), b=500 (3.0±0.7) and b=700 (3.6±0.6) (all p<0.001). Mean ADCs of normal vertebral bodies (n=162) were 0.23, 0.17 and 0.11×10-3mm2/s with b=300, 500 and 700s/mm2, respectively. In contrast, mean ADCs were 0.89, 0.70 and 0.59×10-3mm2/s for benign vertebral compression fractures and 0.79, 0.66 and 0.51×10-3mm2/s for pathologic fractures with b=300, 500 and 700s/mm2, respectively. No significant difference was found between ADCs of benign and pathologic fractures.Conclusion: 3-T DWI of the spine is feasible and lower b-values (300s/mm2) are recommended. However, our preliminary results show no advantage of DWI in differentiating benign from pathologic vertebral compression fractures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: To test the hypothesis that intervals with superior beat-to-beat coronary artery repositioning precision exist in the cardiac cycle, to design a coronary MR angiography (MRA) methodology in response, and to ascertain its performance. METHODS: Coronary repositioning precision in consecutive heartbeats was measured on x-ray coronary angiograms of 17 patients and periods with the highest repositioning precision were identified. In response, the temporal order of coronary MRA pulse sequence elements required modification and the T2 -prep now follows (T2 -post) rather than precedes the imaging part of the sequence. The performance of T2 -post was quantitatively compared (signal-to-noise [SNR], contrast-to-noise [CNR], vessel sharpness) to that of T2 -prep in vivo. RESULTS: Coronary repositioning precision is <1 mm at peak systole and in mid diastole. When comparing systolic T2 -post to diastolic T2 -prep, CNR and vessel sharpness remained unchanged (both P = NS) but SNR for muscle and blood increased by 104% and 36% (both P < 0.05), respectively. CONCLUSION: Windows with improved coronary repositioning precision exist in the cardiac cycle: one in peak systole and one in mid diastole. Peak-systolic imaging necessitates a re-design of conventional coronary MRA pulse sequences and leads to image quality very similar to that of conventional mid-diastolic data acquisition but improved SNR. J. Magn. Reson. Imaging 2015;41:1251-1258. © 2014 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION: Intravoxel incoherent motion (IVIM) imaging is an MRI perfusion technique that uses a diffusion-weighted sequence with multiple b values and a bi-compartmental signal model to measure the so-called pseudo-diffusion of blood caused by its passage through the microvascular network. The goal of the current study was to assess the feasibility of IVIM perfusion fraction imaging in patients with acute stroke. METHODS: Images were collected in 17 patients with acute stroke. Exclusion criteria were onset of symptoms to imaging >5 days, hemorrhagic transformation, infratentorial lesions, small lesions <0.5 cm in minimal diameter and hemodynamic instability. IVIM imaging was performed at 3 T, using a standard spin-echo Stejskal-Tanner pulsed gradients diffusion-weighted sequence, using 16 b values from 0 to 900 s/mm(2). Image quality was assessed by two radiologists, and quantitative analysis was performed in regions of interest placed in the stroke area, defined by thresholding the apparent diffusion coefficient maps, as well as in the contralateral region. RESULTS: IVIM perfusion fraction maps showed an area of decreased perfusion fraction f in the region of decreased apparent diffusion coefficient. Quantitative analysis showed a statistically significant decrease in both IVIM perfusion fraction f (0.026 ± 0.019 vs. 0.056 ± 0.025, p = 2.2 · 10(-6)) and diffusion coefficient D compared with the contralateral side (3.9 ± 0.79 · 10(-4) vs. 7.5 ± 0.86 · 10(-4) mm(2)/s, p = 1.3 · 10(-20)). CONCLUSION: IVIM perfusion fraction imaging is feasible in acute stroke. IVIM perfusion fraction is significantly reduced in the visible infarct. Further studies should evaluate the potential for IVIM to predict clinical outcome and treatment response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Image quality in magnetic resonance imaging (MRI) is considerably affected by motion. Therefore, motion is one of the most common sources of artifacts in contemporary cardiovascular MRI. Such artifacts in turn may easily lead to misinterpretations in the images and a subsequent loss in diagnostic quality. Hence, there is considerable research interest in strategies that help to overcome these limitations at minimal cost in time, spatial resolution, temporal resolution, and signal-to-noise ratio. This review summarizes and discusses the three principal sources of motion: the beating heart, the breathing lungs, and bulk patient movement. This is followed by a comprehensive overview of commonly used compensation strategies for these different types of motion. Finally, a summary and an outlook are provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: Visualization of coronary blood flow by means of a slice-selective inversion pre-pulse in concert with bright-blood coronary MRA. MATERIALS AND METHODS: Coronary magnetic resonance angiography (MRA) of the right coronary artery (RCA) was performed in eight healthy adult subjects on a 1.5 Tesla MR system (Gyroscan ACS-NT, Philips Medical Systems, Best, NL) using a free-breathing navigator-gated and cardiac-triggered 3D steady-state free-precession (SSFP) sequence with radial k-space sampling. Imaging was performed with and without a slice-selective inversion pre-pulse, which was positioned along the main axis of the coronary artery but perpendicular to the imaging volume. Objective image quality parameters such as SNR, CNR, maximal visible vessel length, and vessel border definition were analyzed. RESULTS: In contrast to conventional bright-blood 3D coronary MRA, the selective inversion pre-pulse provided a direct measure of coronary blood flow. In addition, CNR between the RCA and right ventricular blood pool was increased and the vessels had a tendency towards better delineation. Blood SNR and CNR between right coronary blood and epicardial fat were comparable in both sequences. CONCLUSION: The combination of a free-breathing navigator-gated and cardiac-triggered 3D SSFP sequence with a slice-selective inversion pre-pulse allows for direct and directional visualization of coronary blood flow with the additional benefit of improved contrast between coronary and right ventricular blood pool.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To investigate the impact of end-systolic imaging on quality of right coronary magnetic resonance angiography (MRA) in comparison to diastolic and to study the effect of RR interval variability on image quality. MATERIALS AND METHODS: The right coronary artery (RCA) of 10 normal volunteers was imaged at 3T using parallel imaging (sensitivity encoding [SENSE]). Navigator-gated three-dimensional (3D) gradient echo was used three times: 1) end-systolic short acquisition (SS): 35-msec window; 2) diastolic short (DS): middiastolic acquisition using 35-msec window; and 3) diastolic long (DL): 75-msec diastolic acquisition window. Vectorcardiogram (VCG) data was used to analyze RR variability. Vessel sharpness, length, and diameter were compared to each other and correlated with RR variability. Blinded qualitative image scores of the images were compared. RESULTS: Quantitative and qualitative parameters were not significantly different and showed no significant correlation with RR variability. CONCLUSION: Imaging the RCA at 3T during the end-systolic rest period using SENSE is possible without significant detrimental effect on image quality. Breaking away from the standard of imaging only during diastole can potentially improve image quality in tachycardic patients or used for simultaneous imaging during both periods in a single scan.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to prospectively compare free-breathing navigator-gated cardiac-triggered three-dimensional steady-state free precession (SSFP) spin-labeling coronary magnetic resonance (MR) angiography performed by using Cartesian k-space sampling with that performed by using radial k-space sampling. A new dedicated placement of the two-dimensional selective labeling pulse and an individually adjusted labeling delay time approved by the institutional review board were used. In 14 volunteers (eight men, six women; mean age, 28.8 years) who gave informed consent, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, vessel length, and subjective image quality were investigated. Differences between groups were analyzed with nonparametric tests (Wilcoxon, Pearson chi2). Radial imaging, as compared with Cartesian imaging, resulted in a significant reduction in the severity of motion artifacts, as well as an increase in SNR (26.9 vs 12.0, P < .05) in the coronary arteries and CNR (23.1 vs 8.8, P < .05) between the coronary arteries and the myocardium. A tendency toward improved vessel sharpness and vessel length was also found with radial imaging. Radial SSFP imaging is a promising technique for spin-labeling coronary MR angiography.