39 resultados para ISOLATED RAT ADIPOCYTES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

GLUT2 expression is strongly decreased in glucose-unresponsive pancreatic beta cells of diabetic rodents. This decreased expression is due to circulating factors distinct from insulin or glucose. Here we evaluated the effect of palmitic acid and the synthetic glucocorticoid dexamethasone on GLUT2 expression by in vitro cultured rat pancreatic islets. Palmitic acid induced a 40% decrease in GLUT2 mRNA levels with, however, no consistent effect on protein expression. Dexamethasone, in contrast, had no effect on GLUT2 mRNA, but decreased GLUT2 protein by about 65%. The effect of dexamethasone was more pronounced at high glucose concentrations and was inhibited by the glucocorticoid antagonist RU-486. Biosynthetic labeling experiments revealed that GLUT2 translation rate was only minimally affected by dexamethasone, but that its half-life was decreased by 50%, indicating that glucocorticoids activated a posttranslational degradation mechanism. This degradation mechanism was not affecting all membrane proteins, since the alpha subunit of the Na+/K+-ATPase was unaffected. Glucose-induced insulin secretion was strongly decreased by treatment with palmitic acid and/or dexamethasone. The insulin content was decreased ( approximately 55 percent) in the presence of palmitic acid, but increased ( approximately 180%) in the presence of dexamethasone. We conclude that a combination of elevated fatty acids and glucocorticoids can induce two common features observed in diabetic beta cells, decreased GLUT2 expression, and loss of glucose-induced insulin secretion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are only a few studies on the ontogeny and differentiation process of the hypothalamic supraoptic-paraventriculo-neurohypophysial neurosecretory system. In vitro neuron survival improves if cells are of embryonic origin; however, surviving hypothalamic neurons in culture were found to express small and minimal amounts of arginine-vasopressin (AVP) and oxytocin (OT), respectively. The aim of this study was to develop a primary neuronal culture design applicable to the study of magnocellular hypothalamic system functionality. For this purpose, a primary neuronal culture was set up after mechanical dissociation of sterile hypothalamic blocks from 17-day-old Sprague-Dawley rat embryos (E17) of both sexes. Isolated hypothalamic cells were cultured with supplemented (B27)-NeuroBasal medium containing an agent inhibiting non-neuron cell proliferation. The neurosecretory process was characterized by detecting AVP and OT secreted into the medium on different days of culture. Data indicate that spontaneous AVP and OT release occurred in a culture day-dependent fashion, being maximal on day 13 for AVP, and on day 10 for OT. Interestingly, brain-derived neurotrophic factor (BDNF) and Angiotensin II (A II) were able to positively modulate neuropeptide output. Furthermore, on day 17 of culture, non-specific (high-KCl) and specific (Angiotensin II) stimuli were able to significantly (P < 0.05) enhance the secretion of both neuropeptides over respective baselines. This study suggests that our experimental design is useful for the study of AVP- and OT-ergic neuron functionality and that BDNF and A II are positive modulators of embryonic hypothalamic cell development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different interactions have been described between glucocorticoids and the product of the ob gene leptin. Leptin can inhibit the activation of the hypothalamo-pituitary-adrenal axis by stressful stimuli, whereas adrenal glucocorticoids stimulate leptin production by the adipocyte. The present study was designed to investigate the potential direct effects of leptin to modulate glucocorticoid production by the adrenal. Human adrenal glands from kidney transplant donors were dissociated, and isolated primary cells were studied in vitro. These cells were preincubated with recombinant leptin (10(-10)-10(-7) M) for 6 or 24 h, and basal or ACTH-stimulated cortisol secretion was subsequently measured. Basal cortisol secretion was unaffected by leptin, but a significant and dose-dependent inhibition of ACTH-stimulated cortisol secretion was observed [down by 29 +/- 0.1% of controls with the highest leptin dose, P &lt; 0.01 vs. CT (unrelated positive control)]. This effect of leptin was also observed in rat primary adrenocortical cells, where leptin inhibited stimulated corticosterone secretion in a dose-dependent manner (down by 46 +/- 0.1% of controls with the highest leptin dose, P &lt; 0.001 vs. CT). These effects of leptin in adrenal cells are likely mediated by the long isoform of the leptin receptor (OB-R), because its transcript was found to be expressed in the adrenal tissue and leptin had no inhibitory effect in adrenal glands obtained from db/db mice. Therefore, leptin inhibits directly stimulated cortisol secretion from human and rat adrenal glands, and this may represent an important mechanism to modulate glucocorticoid levels in various metabolic states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Isolated lung perfusion (ILP) with free and a novel liposomal-encapsulated doxorubicin (Liporubicin, CT Sciences SA, Lausanne, Switzerland) was compared with respect to drug uptake and distribution in rat lungs bearing a sarcomatous tumor. METHODS: A single sarcomatous tumor was generated in the left lung of 39 Fischer rats, followed 10 days later by left-sided ILP (n = 36) with free and equimolar-dosed liposomal doxorubicin at doses of 100 microg (n = 9) and 400 microg (n = 9) for each doxorubicin formulation. In each perfused lung, the drug concentration and distribution were assessed in the tumor and in three areas of normal lung parenchyma by high-performance liquid chromatography (n = 6) and fluorescence microscopy (n = 3). Histologic assessment and immunostaining with von Willebrand factor was performed in 3 animals with untreated tumors. RESULTS: The sarcomatous tumors in controls were well vascularized with fine branching capillaries present throughout the tumors. Isolated lung perfusion resulted in a heterogeneous drug distribution within the perfused lung and a consistently lower drug uptake in tumors than in lung parenchyma for both doxorubicin formulations and both drug doses applied. Isolated lung perfusion with free doxorubicin resulted in a significantly higher drug uptake than Liporubicin in both the tumor and lung tissue for both drug doses applied (p < 0.01). However, the tumor/normal tissue drug ratio was lower for free than for liposomal doxorubicin at a drug dose of 100 microg (0.27 +/- 0.1 vs 0.53 +/- 0.5; p = 0.225) and similar for both doxorubicin formulations at a drug dose of 400 microg (0.67 +/- 0.2 vs 0.54 +/- 0.2; p = 0.335). Both doxorubicin formulations resulted in fluorescence signaling emerging from all tissue compartments of normal lung parenchyma but only in weak and sporadic signaling from the tumors confined to the tumor periphery and vessels situated within the tumor for both drug doses assessed. CONCLUSIONS: Isolated lung perfusion with free and liposomal doxorubicin resulted in a heterogeneous drug distribution within the perfused lung and in a lower drug uptake in tumors than in lung tissue for both doxorubicin formulations and drug doses applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of isolated beta integrin cytoplasmic domains in cultured endothelial cells was reported to induce cell detachment and death. To test whether cell death was the cause or the consequence of cell detachment, we expressed isolated integrin beta1 cytoplasmic and transmembrane domains (CH1) in cultured human umbilical vein endothelial cells (HUVEC), and monitored detachment, viability, caspase activation and signaling. CH1 expression induced dose-dependent cell detachment. At 24 h over 90% of CH1-expressing HUVEC were detached but largely viable (>85%). No evidence of pro-caspase-8,-3, and PARP cleavage or suppression of phosphorylation of ERK, PKB and Ikappa-B was observed. The caspase inhibitor z-VAD did not prevent cell detachment. At 48 h, however, CH1-expressing cells were over 50% dead. As a comparison trypsin-mediated detachment resulted in a time-dependent cell death, paralleled by caspase-3 activation and suppression of ERK, PKB and Ikappa-B phosphoyrylation at 24 h or later after detachment. HUVEC stimulation with agents that strengthen integrin-mediated adhesion (i.e. PMA, the Src inhibitor PP2 and COMP-Ang1) did not prevent CH1-induced detachment. Expression of CH1 in rat carotid artery endothelial cells in vivo caused endothelial cell detachment and increased nuclear DNA fragmentation among detached cells. A construct lacking the integrin cytoplasmic domain (CH2) had no effect on adhesion and cell viability in vitro and in vivo. These results demonstrate that isolated beta1 cytoplasmic domain expression induces caspase-independent detachment of viable endothelial cells and that death is secondary to detachment (i.e. anoikis). They also reveal an essential role for integrins in the adhesion and survival of quiescent endothelial cells in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Abdominal aortic aneurysms (AAAs) expand because of aortic wall destruction. Enrichment in Vascular Smooth Muscle Cells (VSMCs) stabilizes expanding AAAs in rats. Mesenchymal Stem Cells (MSCs) can differentiate into VSMCs. We have tested the hypothesis that bone marrow-derived MSCs (BM-MSCs) stabilizes AAAs in a rat model. MATERIAL AND METHODS: Rat Fischer 344 BM-MSCs were isolated by plastic adhesion and seeded endovascularly in experimental AAAs using xenograft obtained from guinea pig. Culture medium without cells was used as control group. The main criteria was the variation of the aortic diameter at one week and four weeks. We evaluated the impact of cells seeding on inflammatory response by immunohistochemistry combined with RT-PCR on MMP9 and TIMP1 at one week. We evaluated the healing process by immunohistochemistry at 4 weeks. RESULTS: The endovascular seeding of BM-MSCs decreased AAA diameter expansion more powerfully than VSMCs or culture medium infusion (6.5% ± 9.7, 25.5% ± 17.2 and 53.4% ± 14.4; p = .007, respectively). This result was sustained at 4 weeks. BM-MSCs decreased expression of MMP-9 and infiltration by macrophages (4.7 ± 2.3 vs. 14.6 ± 6.4 mm(2) respectively; p = .015), increased Tissue Inhibitor Metallo Proteinase-1 (TIMP-1), compared to culture medium infusion. BM-MSCs induced formation of a neo-aortic tissue rich in SM-alpha active positive cells (22.2 ± 2.7 vs. 115.6 ± 30.4 cells/surface units, p = .007) surrounded by a dense collagen and elastin network covered by luminal endothelial cells. CONCLUSIONS: We have shown in this rat model of AAA that BM-MSCs exert a specialized function in arterial regeneration that transcends that of mature mesenchymal cells. Our observation identifies a population of cells easy to isolate and to expand for therapeutic interventions based on catheter-driven cell therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Streptococcus tigurinus is responsible for systemic infections in humans including infective endocarditis. We investigated whether the invasive trait of S. tigurinus in humans correlated with an increased ability to induce IE in rats. Rats with catheter-induced aortic vegetations were inoculated with 10⁴ CFU/ml of either of four S. tigurinus strains AZ_3a(T), AZ_4a, AZ_8 and AZ_14, isolated from patients with infective endocarditis or with the well known IE pathogen Streptococcus gordonii (Challis). Aortic infection was assessed after 24 h. S. tigurinus AZ_3a(T), AZ_4a and AZ_14 produced endocarditis in ≥80% of rats whereas S. gordonii produced endocarditis in only 33% of animals (P<0.05). S. tigurinus AZ_8 caused vegetation infection in 56% of the animals. The capacity of S. tigurinus to induce aortic infection was not related to their ability to bind extracellular matrix proteins (fibrinogen, fibronectin or collagen) or to trigger platelet aggregation. However, all S. tigurinus isolates showed an enhanced resistance to phagocytosis by macrophages and two of them had an increased ability to enter endothelial cells, key attributes of invasive streptococcal species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND/AIM: We have reported that neonatal treatment with monosodium L-glutamate (MSG), which causes damage to the arcuate nucleus, leads to severe hyperleptinemia and reduced adrenal leptin receptor (ob-Rb) expression in adulthood. As a result, rats given MSG neonatally display corticoadrenal leptin-resistance, a defect that is overridden by normalization of corticoadrenal hyperfunction. The aim of the present study was to determine whether negative energy conditions could correct corticoadrenal cell dysfunction in rats given MSG neonatally. METHODS: Normal (CTR) and MSG-treated female rats were subjected to food removal for 1-5 days, or prolonged (24-61 days) food restriction (FR). Plasma levels of several biomarkers and in vitro corticoadrenal function were evaluated following starvation or FR. RESULTS: Fasting for 1-5 days reduced plasma leptin levels in CTR and MSG rats, compared to levels in the respective groups fed ad libitum(p < 0.05), but adrenal leptin-resistance was unchanged. With prolonged FR, isolated adrenal cells from MSG rats became sensitive to leptin, which lowered ACTH-induced glucocorticoid release. This restoration of leptin response was associated with normalization of adrenal ob-Rb gene expression. CONCLUSION: Dietary restriction in some leptin-resistant obese phenotypes may normalize adrenocortical function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurotrophic factors appear as essential factors for normal development and repair of the nervous tissue. Veratrylguanidine methane sulfonate, has been shown to induce important neurite outgrowth of cultured dorsal root ganglia isolated from newborn rats. Its action was similar to that of NGF and was found to be additive to that of NGF. In order to see if this compound was able to stimulate axonal growth in adult animals, we examined the effect of this substance on the regeneration of the lesioned sciatic nerve. Using histochemical, immunohistochemical and ultrastructural studies, it is shown that a single intraperitoneal injection of veratrylguanidine methane sulfonate significantly increases the axonal growth during repair of the adult rat sciatic nerve. The efficiency of this substance is explained by its good targeting and long life time in the sciatic nerve.