116 resultados para Hemoglobin variants
Resumo:
BACKGROUND: Decreasing exposure to airborne particulates was previously associated with reduced age-related decline in lung function. However, whether the benefit from improved air quality depends on genetic background is not known. Recent evidence points to the involvement of the genes p53 and p21 and of the cell cycle control gene cyclin D1 (CCND1) in the response of bronchial cells to air pollution. OBJECTIVE: We determined in 4,326 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) whether four single-nucleotide polymorphisms in three genes [CCND1 (rs9344 [P242P], rs667515), p53 (rs1042522 [R72P]), and p21 (rs1801270 [S31R])] modified the previously observed attenuation of the decline in the forced expiratory flow between 25% and 75% of the forced vital capacity (FEF(25-75)) associated with improved air quality. METHODS: Subjects of the prospective population-based SAPALDIA cohort were assessed in 1991 and 2002 by spirometry, questionnaires, and biological sample collection for genotyping. We assigned spatially resolved concentrations of particulate matter with aerodynamic diameter < or = 10 microm (PM(10)) to each participant's residential history 12 months before the baseline and follow-up assessments. RESULTS: The effect of diminishing PM(10) exposure on FEF(25-75) decline appeared to be modified by p53 R72P, CCND1 P242P, and CCND1 rs667515. For example, a 10-microg/m(3) decline in average PM(10) exposure over an 11-year period attenuated the average annual decline in FEF(25-75) by 21.33 mL/year (95% confidence interval, 10.57-32.08) among participants homozygous for the CCND1 (P242P) GG genotype, by 13.72 mL/year (5.38-22.06) among GA genotypes, and by 6.00 mL/year (-4.54 to 16.54) among AA genotypes. CONCLUSIONS: Our results suggest that cell cycle control genes may modify the degree to which improved air quality may benefit respiratory function in adults.
Resumo:
The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P< or =5x10(-8)). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P< or =0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2x10(-19) for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9x10(-8), n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5x10(-6), n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2x10(-3), n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.
Resumo:
PURPOSE: All kinds of blood manipulations aim to increase the total hemoglobin mass (tHb-mass). To establish tHb-mass as an effective screening parameter for detecting blood doping, the knowledge of its normal variation over time is necessary. The aim of the present study, therefore, was to determine the intraindividual variance of tHb-mass in elite athletes during a training year emphasizing off, training, and race seasons at sea level. METHODS: tHb-mass and hemoglobin concentration ([Hb]) were determined in 24 endurance athletes five times during a year and were compared with a control group (n = 6). An analysis of covariance was used to test the effects of training phases, age, gender, competition level, body mass, and training volume. Three error models, based on 1) a total percentage error of measurement, 2) the combination of a typical percentage error (TE) of analytical origin with an absolute SD of biological origin, and 3) between-subject and within-subject variance components as obtained by an analysis of variance, were tested. RESULTS: In addition to the expected influence of performance status, the main results were that the effects of training volume (P = 0.20) and training phases (P = 0.81) on tHb-mass were not significant. We found that within-subject variations mainly have an analytical origin (TE approximately 1.4%) and a very small SD (7.5 g) of biological origin. CONCLUSION: tHb-mass shows very low individual oscillations during a training year (<6%), and these oscillations are below the expected changes in tHb-mass due to Herythropoetin (EPO) application or blood infusion (approximately 10%). The high stability of tHb-mass over a period of 1 year suggests that it should be included in an athlete's biological passport and analyzed by recently developed probabilistic inference techniques that define subject-based reference ranges.
Resumo:
BACKGROUND: We studied human cytomegalovirus (CMV) donor-to-recipient transmission patterns in organ transplantation by analyzing genomic variants on the basis of CMV glycoprotein B (gB) genotyping. METHODS: Organ transplant recipients were included in the study if they had CMV viremia, if they had received an organ from a CMV-seropositive donor, and if there was at least 1 other recipient of an organ from the same donor who developed CMV viremia. Genotypes (gB1-4) were determined by real-time polymerase chain reaction. RESULTS: Forty-seven recipients of organs from 21 donors developed CMV viremia. Twenty-three recipients had a pretransplant donor/recipient (D/R) CMV serostatus of D(+)/R(+), and 24 had a serostatus of D(+)/R(-). The prevalences of genotypes in recipients were as follows: for gB1, 51% (n = 24); for gB2, 19% (n = 9); for gB3, 9% (n = 4); for gB4, 0% (n = 0); and for mixed infection, 21% (n = 10). Recipients of an organ from a common donor had infection with CMV of the same gB genotype in 12 (57%) of 21 instances. Concordance between genotypes was higher among seronegative (i.e., D(+)/R(-)) recipients than among seropositive (D(+)/R(+)) recipients, although discordances resulting from the transmission of multiple strains were seen. In seropositive recipients, transmission of multiple strains from the donor could not be differentiated from reactivation of a recipient's own strains. CONCLUSION: Our analysis of strain concordance among recipients of organs from common donors showed that transmission of CMV has complex dynamic patterns. In seropositive recipients, transmission or reactivation of multiple CMV strains is possible.
Resumo:
Genetic variation in the leucine-rich repeat and Ig domain containing 1 gene (LINGO1) was recently associated with an increased risk of developing essential tremor (ET) and Parkinson disease (PD). Herein, we performed a comprehensive study of LINGO1 and its paralog LINGO2 in ET and PD by sequencing both genes in patients (ET, n=95; PD, n=96) and by examining haplotype-tagging single-nucleotide polymorphisms (tSNPs) in a multicenter North American series of patients (ET, n=1,247; PD, n= 633) and controls (n=642). The sequencing study identified six novel coding variants in LINGO1 (p.S4C, p.V107M, p.A277T, p.R423R, p.G537A, p.D610D) and three in LINGO2 (p.D135D, p.P217P, p.V565V), however segregation analysis did not support pathogenicity. The association study employed 16 tSNPs at the LINGO1 locus and 21 at the LINGO2 locus. One variant in LINGO1 (rs9652490) displayed evidence of an association with ET (odds ratio (OR) =0.63; P=0.026) and PD (OR=0.54; P=0.016). Additionally, four other tSNPs in LINGO1 and one in LINGO2 were associated with ET and one tSNP in LINGO2 associated with PD (P<0.05). Further analysis identified one tSNP in LINGO1 and two in LINGO2 which influenced age at onset of ET and two tSNPs in LINGO1 which altered age at onset of PD (P<0.05). Our results support a role for LINGO1 and LINGO2 in determining risk for and perhaps age at onset of ET and PD. Further studies are warranted to confirm these findings and to determine the pathogenic mechanisms involved.
Resumo:
Soluble peptide/MHC-class-I (pMHC) multimers have recently emerged as unique reagents for the study of specific interactions between the pMHC complex and the TCR. Here, we assessed the relative binding efficiency of a panel of multimers incorporating single-alanine-substituted variants of the tumor-antigen-derived peptide MAGE-A10(254-262) to specific CTL clones displaying different functional avidity. For each individual clone, the efficiency of binding of multimers incorporating MAGE-A10 peptide variants was, in most cases, in good although not linear correlation with the avidity of recognition of the corresponding variant. In addition, we observed two types of discrepancies between efficiency of recognition and multimer binding. First, for some peptide variants, efficient multimer binding was detected in the absence of measurable effector functions. Some of these peptide variants displayed antagonist activity. Second, when comparing different clones we found clear discrepancies between the dose of peptide required to obtain half-maximal lysis in CTL assays and the binding efficiency of the corresponding multimers. These discrepancies, however, were resolved when the differential stability of the TCR/pMHC complexes was determined. For individual clones, decreased recognition correlated with increased TCR/pMHC off-rate. TCR/pMHC complexes formed by antagonist ligands displayed off-rates faster than those of TCR/pMHC complexes formed with weak agonists. In addition, when comparing different clones, the efficiency of multimer staining correlated better with relative multimer off-rates than with half-maximal lysis values. Altogether, the data presented here reconcile and extend our previous results on the impact of the kinetics of interaction of TCR with pMHC complexes on multimer binding and underline the crucial role of TCR/pMHC off-rates for the functional outcome of such interactions.
Resumo:
Polymorphisms in IL28B were shown to affect clearance of hepatitis C virus (HCV) infection in genome-wide association (GWA) studies. Only a fraction of patients with chronic HCV infection develop liver fibrosis, a process that might also be affected by genetic factors. We performed a 2-stage GWA study of liver fibrosis progression related to HCV infection. We studied well-characterized HCV-infected patients of European descent who underwent liver biopsies before treatment. We defined various liver fibrosis phenotypes on the basis of METAVIR scores, with and without taking the duration of HCV infection into account. Our GWA analyses were conducted on a filtered primary cohort of 1161 patients using 780,650 single nucleotide polymorphisms (SNPs). We genotyped 96 SNPs with P values <5 × 10(-5) from an independent replication cohort of 962 patients. We then assessed the most interesting replicated SNPs using DNA samples collected from 219 patients who participated in separate GWA studies of HCV clearance. In the combined cohort of 2342 HCV-infected patients, the SNPs rs16851720 (in the total sample) and rs4374383 (in patients who received blood transfusions) were associated with fibrosis progression (P(combined) = 8.9 × 10(-9) and 1.1 × 10(-9), respectively). The SNP rs16851720 is located within RNF7, which encodes an antioxidant that protects against apoptosis. The SNP rs4374383, together with another replicated SNP, rs9380516 (P(combined) = 5.4 × 10(-7)), were linked to the functionally related genes MERTK and TULP1, which encode factors involved in phagocytosis of apoptotic cells by macrophages. Our GWA study identified several susceptibility loci for HCV-induced liver fibrosis; these were linked to genes that regulate apoptosis. Apoptotic control might therefore be involved in liver fibrosis.
Resumo:
Previous studies showed a fetal sheep liver extract (FSLE), in association with monophosphoryl lipid A, MPLA (a bioactive component of lipid A of LPS), could interact to induce the development of dendritic cells (DCs) which regulated production of Foxp3+ Treg. This interaction was associated with an altered gene expression both of distinct subsets of TLRs and of CD200Rs. Prior studies had suggested that major interacting components within FSLE were gamma-chain of fetal hemoglobin (Hgbgamma) and glutathione (GSH). We investigated whether differentiation/maturation of DCs in vitro in the presence of either GM-CSF or Flt3L to produce preferentially either immunogenic or tolerogenic DCs was itself controlled by an interaction between MPLA, GSH and Hgbgamma. At low (approximately 10 microg/ml) Hgbgamma concentrations, DCs developing in culture with GSH and MPLA produced optimal stimulation of allogeneic CTL cell responses in vitro (and enhanced skin graft rejection in vivo). At higher concentrations (>40 microg/ml Hgbgamma) and equivalent concentrations of MPLA and GSH, the DCs induce populations of Treg which can suppress the induction of allogeneic CTL and graft rejection in vivo. These different populations of DCs express different patterns of mRNAs for the CD200R family. Addition of anti-TLR or anti-MD-1 mAbs to DCs developing in this mixture (Hgbgamma+GSH+MPLA), suggests that one effect of (GSH+Hgbgamma) on MPLA stimulation may involve altered signaling through TLR4.
Resumo:
A previously described extract of sheep fetal liver was reported to reverse many of the cytokine changes associated with aging in mice, including an augmented spleen cell ConA-stimulated production of IL-4 and decreased production of IL-2. Similar effects were not seen with adult liver preparations. These changes were observed in various strains of mice, including BALB/c, DBA/2 and C57BL/6, using mice with ages ranging from 8 to 110 weeks. Preliminary characterization of this crude extract showed evidence for the presence of Hb gamma chain, as well as of lipid A of LPS. We show below that purified preparations of sheep fetal Hb, but not adult Hb, in concert with suboptimally stimulating doses of LPS (lipid A), cooperate in the regulation of production of a number of cytokines, including TNFalpha and IL-6, in vitro. Furthermore, isolated fresh spleen or peritoneal cells from animals treated in vivo with the same combination of Hb and LPS, showed an augmented capacity to produce these cytokines on further culture in vitro. Evidence was also obtained for a further interaction between CLP, LPS and fetal Hb itself in this augmented cytokine production. These data suggest that some of the functional activities in the fetal liver extract reported earlier can be explained in terms of a novel immunomodulatory role of a mixture of LPS (lipid A) and fetal Hb.
Resumo:
BACKGROUND: Drug-resistant human immunodeficiency virus type 1 (HIV-1) minority variants (MVs) are present in some antiretroviral therapy (ART)-naive patients. They may result from de novo mutagenesis or transmission. To date, the latter has not been proven. METHODS: MVs were quantified by allele-specific polymerase chain reaction in 204 acute or recent seroconverters from the Zurich Primary HIV Infection study and 382 ART-naive, chronically infected patients. Phylogenetic analyses identified transmission clusters. RESULTS: Three lines of evidence were observed in support of transmission of MVs. First, potential transmitters were identified for 12 of 16 acute or recent seroconverters harboring M184V MVs. These variants were also detected in plasma and/or peripheral blood mononuclear cells at the estimated time of transmission in 3 of 4 potential transmitters who experienced virological failure accompanied by the selection of the M184V mutation before transmission. Second, prevalence between MVs harboring the frequent mutation M184V and the particularly uncommon integrase mutation N155H differed highly significantly in acute or recent seroconverters (8.2% vs 0.5%; P < .001). Third, the prevalence of less-fit M184V MVs is significantly higher in acutely or recently than in chronically HIV-1-infected patients (8.2% vs 2.5%; P = .004). CONCLUSIONS: Drug-resistant HIV-1 MVs can be transmitted. To what extent the origin-transmission vs sporadic appearance-of these variants determines their impact on ART needs to be further explored.
Resumo:
Multiple genome-wide association studies (GWAS) have been performed in HIV-1 infected individuals, identifying common genetic influences on viral control and disease course. Similarly, common genetic correlates of acquisition of HIV-1 after exposure have been interrogated using GWAS, although in generally small samples. Under the auspices of the International Collaboration for the Genomics of HIV, we have combined the genome-wide single nucleotide polymorphism (SNP) data collected by 25 cohorts, studies, or institutions on HIV-1 infected individuals and compared them to carefully matched population-level data sets (a list of all collaborators appears in Note S1 in Text S1). After imputation using the 1,000 Genomes Project reference panel, we tested approximately 8 million common DNA variants (SNPs and indels) for association with HIV-1 acquisition in 6,334 infected patients and 7,247 population samples of European ancestry. Initial association testing identified the SNP rs4418214, the C allele of which is known to tag the HLA-B*57:01 and B*27:05 alleles, as genome-wide significant (p = 3.6×10(-11)). However, restricting analysis to individuals with a known date of seroconversion suggested that this association was due to the frailty bias in studies of lethal diseases. Further analyses including testing recessive genetic models, testing for bulk effects of non-genome-wide significant variants, stratifying by sexual or parenteral transmission risk and testing previously reported associations showed no evidence for genetic influence on HIV-1 acquisition (with the exception of CCR5Δ32 homozygosity). Thus, these data suggest that genetic influences on HIV acquisition are either rare or have smaller effects than can be detected by this sample size.
Resumo:
The expression of Ia-associated human Invariant (In) chain glycoproteins was studied in the Raji B cells as well as in their RJ 2.2.5 Ia-negative derived variant cells by using a specific rabbit anti-human In chain antiserum. Two-dimensional gel electrophoresis of immunoprecipitates from either biosynthetically labeled or surface labeled cells were analyzed. In addition, flow microfluorometric analysis of stained cells was performed. The results indicate that the In chain is constitutively produced in the Ia-negative B cell variant. Moreover, it appears that several forms of In chain-related molecules, with different charges and distinct m.w. are equally expressed in Ia-positive and Ia-negative B cells. Finally, no evidence could be obtained that the In molecular family was expressed on the cell surface of Ia-positive Raji and Ia-negative RJ 2.2.5 cells.
Resumo:
Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 × 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.