32 resultados para Hardware reconfigurable
Resumo:
Dixon techniques are part of the methods used to suppress the signal of fat in MRI. They present many advantages compared with other fat suppression techniques including (1) the robustness of fat signal suppression, (2) the possibility to combine these techniques with all types of sequences (gradient echo, spin echo) and different weightings (T1-, T2-, proton density-, intermediate-weighted sequences), and (3) the availability of images both with and without fat suppression from one single acquisition. These advantages have opened many applications in musculoskeletal imaging. We first review the technical aspects of Dixon techniques including their advantages and disadvantages. We then illustrate their applications for the imaging of different body parts, as well as for tumors, neuromuscular disorders, and the imaging of metallic hardware.
Resumo:
Automation was introduced many years ago in several diagnostic disciplines such as chemistry, haematology and molecular biology. The first laboratory automation system for clinical bacteriology was released in 2006, and it rapidly proved its value by increasing productivity, allowing a continuous increase in sample volumes despite limited budgets and personnel shortages. Today, two major manufacturers, BD Kiestra and Copan, are commercializing partial or complete laboratory automation systems for bacteriology. The laboratory automation systems are rapidly evolving to provide improved hardware and software solutions to optimize laboratory efficiency. However, the complex parameters of the laboratory and automation systems must be considered to determine the best system for each given laboratory. We address several topics on laboratory automation that may help clinical bacteriologists to understand the particularities and operative modalities of the different systems. We present (a) a comparison of the engineering and technical features of the various elements composing the two different automated systems currently available, (b) the system workflows of partial and complete laboratory automation, which define the basis for laboratory reorganization required to optimize system efficiency, (c) the concept of digital imaging and telebacteriology, (d) the connectivity of laboratory automation to the laboratory information system, (e) the general advantages and disadvantages as well as the expected impacts provided by laboratory automation and (f) the laboratory data required to conduct a workflow assessment to determine the best configuration of an automated system for the laboratory activities and specificities.