35 resultados para Hardoy, Jorge E.: Environmental problems in an urbanizing world
Resumo:
Yeast vacuoles fragment and fuse in response to environmental conditions, such as changes in osmotic conditions or nutrient availability. Here we analyze osmotically induced vacuole fragmentation by time-lapse microscopy. Small fragmentation products originate directly from the large central vacuole. This happens by asymmetrical scission rather than by consecutive equal divisions. Fragmentation occurs in two distinct phases. Initially, vacuoles shrink and generate deep invaginations that leave behind tubular structures in their vicinity. Already this invagination requires the dynamin-like GTPase Vps1p and the vacuolar proton gradient. Invaginations are stabilized by phosphatidylinositol 3-phosphate (PI(3)P) produced by the phosphoinositide 3-kinase complex II. Subsequently, vesicles pinch off from the tips of the tubular structures in a polarized manner, directly generating fragmentation products of the final size. This phase depends on the production of phosphatidylinositol-3,5-bisphosphate and the Fab1 complex. It is accelerated by the PI(3)P- and phosphatidylinositol 3,5-bisphosphate-binding protein Atg18p. Thus vacuoles fragment in two steps with distinct protein and lipid requirements.
Resumo:
Abstract The solvability of the problem of fair exchange in a synchronous system subject to Byzantine failures is investigated in this work. The fair exchange problem arises when a group of processes are required to exchange digital items in a fair manner, which means that either each process obtains the item it was expecting or no process obtains any information on, the inputs of others. After introducing a novel specification of fair exchange that clearly separates safety and liveness, we give an overview of the difficulty of solving such a problem in the context of a fully-connected topology. On one hand, we show that no solution to fair exchange exists in the absence of an identified process that every process can trust a priori; on the other, a well-known solution to fair exchange relying on a trusted third party is recalled. These two results lead us to complete our system model with a flexible representation of the notion of trust. We then show that fair exchange is solvable if and only if a connectivity condition, named the reachable majority condition, is satisfied. The necessity of the condition is proven by an impossibility result and its sufficiency by presenting a general solution to fair exchange relying on a set of trusted processes. The focus is then turned towards a specific network topology in order to provide a fully decentralized, yet realistic, solution to fair exchange. The general solution mentioned above is optimized by reducing the computational load assumed by trusted processes as far as possible. Accordingly, our fair exchange protocol relies on trusted tamperproof modules that have limited communication abilities and are only required in key steps of the algorithm. This modular solution is then implemented in the context of a pedagogical application developed for illustrating and apprehending the complexity of fair exchange. This application, which also includes the implementation of a wide range of Byzantine behaviors, allows executions of the algorithm to be set up and monitored through a graphical display. Surprisingly, some of our results on fair exchange seem contradictory with those found in the literature of secure multiparty computation, a problem from the field of modern cryptography, although the two problems have much in common. Both problems are closely related to the notion of trusted third party, but their approaches and descriptions differ greatly. By introducing a common specification framework, a comparison is proposed in order to clarify their differences and the possible origins of the confusion between them. This leads us to introduce the problem of generalized fair computation, a generalization of fair exchange. Finally, a solution to this new problem is given by generalizing our modular solution to fair exchange
Resumo:
Genetic color polymorphism is widespread in nature. There is an increasing interest in understanding the adaptive value of heritable color variation and trade-off resolution by differently colored individuals. Melanin-based pigmentation is often associated with variation in many different life history traits. These associations have recently been suggested to be the outcome of pleiotropic effects of the melanocortin system. Although pharmacological research supports that MC1R, a gene with a major role in vertebrate pigmentation, has important immunomodulatory effects, evidence regarding pleiotropy at MC1R in natural populations is still under debate. We experimentally assessed whether MC1R-based pigmentation covaries with both inflammatory and humoral immune responses in the color polymorphic Eleonora's falcon. By means of a cross-fostering experiment, we disentangled potential genetic effects from environmental effects on the covariation between coloration and immunity. Variation in both immune responses was primarily due to genetic factors via the nestlings' MC1R-related color genotype/phenotype, although environmental effects via the color morph of the foster father also had an influence. Overall, dark nestlings had lower immune responses than pale ones. The effect of the color morph of the foster father was also high, but in the opposite direction, and nestlings raised by dark eumelanic foster fathers had higher immune responses than those raised by pale foster fathers. Although we cannot completely discard alternative explanations, our results suggest that MC1R might influence immunity in this species. Morph-specific variation in immunity as well as pathogen pressure may therefore contribute to the long-term maintenance of genetic color polymorphism in natural populations.
Resumo:
Although multiple sclerosis (MS) is recognized as a disorder involving the immune system, the interplay of environmental factors and individual genetic susceptibility seems to influence MS onset and clinical expression, as well as therapeutic responsiveness. Multiple human epidemiological and animal model studies have evaluated the effect of different environmental factors, such as viral infections, vitamin intake, sun exposure, or still dietary and life habits on MS prevalence. Previous Epstein-Barr virus infection, especially if this infection occurs in late childhood, and lack of vitamin D (VitD) currently appear to be the most robust environmental factors for the risk of MS, at least from an epidemiological standpoint. Ultraviolet radiation (UVR) activates VitD production but there are also some elements supporting the fact that insufficient UVR exposure during childhood may represent a VitD-independent risk factor of MS development, as well as negative effect on the clinical and radiological course of MS. Recently, there has been a growing interest in the gut-brain axis, a bidirectional neuro-hormonal communication system between the intestinal microbiota and the central nervous system (CNS). Indeed, components of the intestinal microbiota may be pro-inflammatory, promote the migration of immune cells into the CNS, and thus be a key parameter for the development of autoimmune disorders such as MS. Interestingly most environmental factors seem to play a role during childhood. Thus, if childhood is the most fragile period to develop MS later in life, preventive measures should be applied early in life. For example, adopting a diet enriched in VitD, playing outdoor and avoiding passive smoking would be extremely simple measures of primary prevention for public health strategies. However, these hypotheses need to be confirmed by prospective evaluations, which are obviously difficult to conduct. In addition, it remains to be determined whether and how VitD supplementation in adult life would be useful in alleviating the course of MS, once this disease has already started. A better knowledge of the influence of various environmental stimuli on MS risk and course would certainly allow the development of add-on therapies or measures in parallel to the immunotherapies currently used in MS.
Resumo:
Heterozygosity-fitness correlations (HFCs) have been used to understand the complex interactions between inbreeding, genetic diversity and evolution. Although frequently reported for decades, evidence for HFCs was often based on underpowered studies or inappropriate methods, and hence their underlying mechanisms are still under debate. Here, we used 6100 genome-wide single nucleotide polymorphisms (SNPs) to test for general and local effect HFCs in maritime pine (Pinus pinaster Ait.), an iconic Mediterranean forest tree. Survival was used as a fitness proxy, and HFCs were assessed at a four-site common garden under contrasting environmental conditions (total of 16 288 trees). We found no significant correlations between genome-wide heterozygosity and fitness at any location, despite variation in inbreeding explaining a substantial proportion of the total variance for survival. However, four SNPs (including two non-synonymous mutations) were involved in significant associations with survival, in particular in the common gardens with higher environmental stress, as shown by a novel heterozygosity-fitness association test at the species-wide level. Fitness effects of SNPs involved in significant HFCs were stable across maritime pine gene pools naturally growing in distinct environments. These results led us to dismiss the general effect hypothesis and suggested a significant role of heterozygosity in specific candidate genes for increasing fitness in maritime pine. Our study highlights the importance of considering the species evolutionary and demographic history and different spatial scales and testing environments when assessing and interpreting HFCs.