38 resultados para HUMAN UMBILICAL VEIN
Resumo:
OBJECTIVE: Intimal hyperplasia is a vascular remodelling process that occurs after a vascular injury. The mechanisms involved in intimal hyperplasia are proliferation, dedifferentiation, and migration of medial smooth muscle cells towards the subintimal space. We postulated that gap junctions, which coordinate physiologic processes such as cell growth and differentiation, might participate in the development of intimal hyperplasia. Connexin43 (Cx43) expression levels may be altered in intimal hyperplasia, and we therefore evaluated the regulated expression of Cx43 in human saphenous veins in culture in the presence or not of fluvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity. METHODS: Segments of harvested human saphenous veins, obtained at the time of bypass graft, were opened longitudinally with the luminal surface uppermost and maintained in culture for 14 days. Vein fragments were then processed for histologic examination, neointimal thickness measurements, immunocytochemistry, RNA, and proteins analysis. RESULTS: Of the four connexins (Cx37, 40, 43, and 45), we focused on Cx43 and Cx40, which we found by real-time polymerase chain reaction to be expressed in the saphenous vein because they are the predominant connexins expressed by smooth muscle cells and endothelial cells. After 14 days of culture, histomorphometric analysis showed a significant increase in the intimal thickness as observed during the process of intimal hyperplasia. A time-course analysis revealed a progressive upregulation of Cx43 to reach a maximal increase of sixfold to eightfold at both transcript and protein levels after 14 days in culture. In contrast, the expression of Cx40, abundantly expressed in the endothelial cells, was not altered. Immunofluorescence showed a large increase in Cx43 within smooth muscle cell membranes of the media layer. The development of intimal hyperplasia in vitro was decreased in presence of fluvastatin and was associated with reduced Cx43 expression. CONCLUSIONS: These data show that Cx43 is increased in vitro during the process of intimal hyperplasia and that fluvastatin could prevent this induction, supporting a critical role for Cx43-mediated gap-junctional communication in the human vein during the development of intimal hyperplasia. CLINICAL RELEVANCE: Stenosis due to intimal hyperplasia is the most common cause of failure of venous bypass grafts. To better understand the development of intimal hyperplasia, we used an ex vivo organ culture model to study saphenous veins harvested from patients undergoing a lower limb bypass surgery. In this model, the morphologic and functional integrity of the vessel wall is maintained and significant intimal hyperplasia development occurs after 14 days in culture. We have postulated that gap junctions, which coordinate physiologic processes such as cell growth and differentiation, may participate in the development of intimal hyperplasia. Indeed, intimal hyperplasia consists of proliferation and migration of smooth muscle cells into the subendothelial space. Intercellular communication is responsible for the direct transfer of ions and small molecules from one cell to the other through gap-junction channels found at cell-cell appositions. No study to date has evaluated whether gap junctional communication is involved in the process of intimal hyperplasia in humans. This assertion was investigated by using the aforementioned organ culture model of intimal hyperplasia in human saphenous veins, and our data support a critical role for Cx43-mediated gap junctional communication in human vein during the development of intimal hyperplasia.
Resumo:
The mainstay of contemporary therapies for extensive occlusive arterial disease is venous bypass graft. However, its durability is threatened by intimal hyperplasia (IH) that eventually leads to vessel occlusion and graft failure. Mechanical forces, particularly low shear stress and high wall tension, are thought to initiate and to sustain these cellular and molecular changes, but their exact contribution remains to be unraveled. To selectively evaluate the role of pressure and shear stress on the biology of IH, an ex vivo perfusion system (EVPS) was created to perfuse segments of human saphenous veins under arterial regimen (high shear stress and high pressure). Further technical innovations allowed the simultaneous perfusion of two segments from the same vein, one reinforced with an external mesh. Veins were harvested using a no-touch technique and immediately transferred to the laboratory for assembly in the EVPS. One segment of the freshly isolated vein was not perfused (control, day 0). The two others segments were perfused for up to 7 days, one being completely sheltered with a 4 mm (diameter) external mesh. The pressure, flow velocity, and pulse rate were continuously monitored and adjusted to mimic the hemodynamic conditions prevailing in the femoral artery. Upon completion of the perfusion, veins were dismounted and used for histological and molecular analysis. Under ex vivo conditions, high pressure perfusion (arterial, mean = 100 mm Hg) is sufficient to generate IH and remodeling of human veins. These alterations are reduced in the presence of an external polyester mesh.
Resumo:
Radioiodinated murine monoclonal antibodies (Mabs) 81C6, Me 1-14, C12, D12, and E9, made against or reactive with human gliomas but not normal brain, and Mab UJ13A, a pan-neuroectodermal Mab reactive with normal human glial and neural cells, were evaluated in paired label studies in the D-54 MG subcutaneous human glioma xenograft model system in nude mice. Following intravenous injection in the tail vein of mice bearing 200-400 mm3 tumors, specific localization of Mabs to tumor over time (6 h-9 days) was evaluated by tissue counting; each Mab demonstrated a unique localization profile. The comparison of localization indices (LI), determined as a ratio of tissue level of Mab to control immunoglobulin with simultaneous correction for blood levels of each, showed Mabs 81C6 and Me 1-14 to steadily accumulate in glioma xenografts, maintaining LI from 5-20 at 7-9 days after Mab injection. Mab UJ13A peaked at day 1, maintaining this level through day 2, and declining thereafter. Mabs D12 and C12 peaked at days 3 and 4, respectively, and E9 maintained an LI of greater than 3 from days 3-9. Percent injected dose localized/g of tumor varied from a peak high of 16% (81C6) to a low of 5% (Me 1-14 and UJ13A). Immunoperoxidase histochemistry, performed with each Mab on a battery of primary human brain neoplasms, revealed that Mabs 81C6 and E9, which demonstrated the highest levels of percent injected dose localized/g of tumor over time, reacted with antigens expressed in the extracellular matrix. This finding suggests that extracellular matrix localization of antigen represents a biologically significant factor affecting localization and/or binding in the xenograft model used. The demonstration of significant localization, varied kinetics and patterns of localization of this localizing Mab panel warrants their continued investigation as potential imaging and therapeutic agents for human trials.
Resumo:
Steady-state hematopoiesis and hematopoietic transplantation rely on the unique potential of stem cells to undergo both self-renewal and multilineage differentiation. Fetal liver (FL) represents a promising alternative source of hematopoietic stem cells (HSCs), but limited by the total cell number obtained in a typical harvest. We reported that human FL nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells (SRCs) could be expanded under simple stroma-free culture conditions. Here, we sought to further characterize FL HSC/SRCs phenotypically and functionally before and following culture. Unexpanded or cultured FL cell suspensions were separated into various subpopulations. These were tested for long-term culture potential and for in vivo repopulating function following transplantation into NOD/SCID mice. We found that upon culture of human FL cells, a tight association between classical stem cell phenotypes, such as CD34(+) /CD38(-) and/or side population, and NOD/SCID repopulating function was lost, as observed with other sources. Although SRC activity before and following culture consistently correlated with the presence of a CD34(+) cell population, we provide evidence that, contrary to umbilical cord blood and adult sources, stem cells present in both CD34(+) and CD34(-) FL populations can sustain long-term hematopoietic cultures. Furthermore, upon additional culture, CD34-depleted cell suspensions, devoid of SRCs, regenerated a population of CD34(+) cells possessing SRC function. Our studies suggest that compared to neonatal and adult sources, the phenotypical characteristics of putative human FL HSCs may be less strictly defined, and reinforce the accumulated evidence that human FL represents a unique, valuable alternative and highly proliferative source of HSCs for clinical applications.
Resumo:
Intimal hyperplasia (IH) is the major cause of stenosis of vein grafts. Drugs such as statins prevent stenosis, but their systemic administration has limited effects. We developed a hyaluronic acid hydrogel matrix, which ensures a controlled release of atorvastatin (ATV) at the site of injury. The release kinetics demonstrated that 100% of ATV was released over 10 hours, independent of the loading concentration of the hydrogel. We investigated the effects of such a delivery on primary vascular smooth muscle cells isolated from human veins. ATV decreased the proliferation, migration, and passage of human smooth muscle cells (HSMCs) across a matrix barrier in a similar dose-dependent (5-10 µM) and time-dependent manner (24-72 hours), whether the drug was directly added to the culture medium or released from the hydrogel. Expression analysis of genes known to be involved in the development of IH demonstrated that the transcripts of both the gap junction protein connexin43 (Cx43) and plasminogen activator inhibitor-1 (PAI-1) were decreased after a 24-48-hour exposure to the hydrogel loaded with ATV, whereas the transcripts of the heme oxygenase (HO-1) and the inhibitor of tissue plasminogen activator were increased. At the protein level, Cx43, PAI-1, and metalloproteinase-9 expression were decreased, whereas HO-1 was upregulated in the presence of ATV. The data demonstrate that ATV released from a hydrogel has effects on HSMCs similar to the drug being freely dissolved in the environment.
Resumo:
Colorectal cancer frequently disseminates through the portal vein into the liver. In this study, outbred Swiss nude mice were adapted to facilitate the induction of liver metastases by a pre-grafting treatment with 6 Gy total body irradiation and i.v. injection of anti-asialo GM1 antibody. One day later, cultured LS 174T human colon cancer cells were injected into the surgically exposed spleen, which was resected 3 min later. In 48 of 65 mice, a few to several hundred liver metastases were macroscopically observed at dissection 3 to 4 weeks after transplantation. Ten of 10 mice, followed-up for survival, died with multiple large confluent liver metastases. By reducing the radiation dose to 4 or 0 Gy, or omitting the anti-asialo GM1 antibody injection, only 60%, 37% or 50% of mice, respectively, had visible metastases 3 weeks after transplantation. Carcinoembryonic antigen (CEA) measured in tumour extracts was in the mean 25.6 micrograms/g in liver metastases compared with 9.2 micrograms/g in s.c. tumours. Uptake of radiolabelled anti-CEA monoclonal antibody (MAb) in the metastases 12, 24 and 48 hr after injection gave a mean value of 39% of the injected dose per gram of tissue (ID/g). In comparison, MAb uptake in s.c. and intrasplenic tumours or lung metastases gave a mean percentage ID/g of 20, 18 and 15, respectively. Laser-induced fluorescence after injection of indocyanin-MAb conjugate allowed direct visual detection of small liver metastases, including some that were not visible under normal light. Preliminary results showed that mice, pre-treated with 4 Gy irradiation and the anti-asialo GM1 injection, were tolerant to radioimmunotherapy with a total dose of 500 muCi 131I labeled anti-CEA intact MAbs given in 3 injections.
Resumo:
BACKGROUND: There is currently no consensus in the literature on which embolic agent induces the greatest degree of liver hypertrophy after portal vein embolization (PVE). Only experimental results in a pig model have demonstrated an advantage of n-butyl-cyanoacrylate (NBCA) over 3 other embolic materials (hydrophilic gel, small and large polyvinyl alcohol particles) for PVE. Therefore, the aim of this human study was to retrospectively compare the results of PVE using NBCA with those using spherical microparticles plus coils. METHODS: A total of 34 patients underwent PVE using either NBCA (n = 20), or spherical microparticles plus coils (n = 14). PVE was decided according to preoperative volumetry on the basis of contrast-enhanced CT. Groups were compared for age, sex, volume of the left lobe before PVE and future remnant liver ratio (FRL) (volume of the left lobe/total liver volume - tumor volume). The primary end point was the increase in left lobe volume 1 month after PVE. Secondary end points were procedure complications and biological tolerance. RESULTS: Both groups were similar in terms of age, sex ratio, left lobe volume, and FRL before PVE. NBCA induced a greater increase in volume after PVE than did microparticles plus coils (respectively, +74 ± 69 % and +23 ± 14 %, p < 0.05). The amount of contrast medium used for the procedure was significantly larger when microparticles and coils rather than NBCA were used (respectively, 264 ± 43 ml and 162 ± 34 ml, p < 0.01). The rate of PVE complications as well as the biological tolerance was similar in both groups. CONCLUSION: NBCA seems more effective than spherical microparticles plus coils to induce left-lobe hypertrophy.
Resumo:
The saphenous vein is the conduit of choice in bypass graft procedures. Haemodynamic factors play a major role in the development of intimal hyperplasia (IH), and subsequent bypass failure. To evaluate the potential protective effect of external reinforcement on such a failure, we developed an ex vivo model for the perfusion of segments of human saphenous veins under arterial shear stress. In veins submitted to pulsatile high pressure (mean pressure at 100 mmHg) for 3 or 7 days, the use of an external macroporous polyester mesh 1) prevented the dilatation of the vessel, 2) decreased the development of IH, 3) reduced the apoptosis of smooth muscle cells, and the subsequent fibrosis of the media layer, 4) prevented the remodelling of extracellular matrix through the up-regulation of matrix metalloproteinases (MMP-2, MMP-9) and plasminogen activator type I. The data show that, in an experimental ex vivo setting, an external scaffold decreases IH and maintains the integrity of veins exposed to arterial pressure, via increase in shear stress and decrease wall tension, that likely contribute to trigger selective molecular and cellular changes.