61 resultados para HUMAN MALARIA PARASITE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1). In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer's clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer's clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both reproduction and parasite defense can be costly, and an animal may face a trade-off between investing in offspring or in parasite defense. In contrast to the findings from nonexperimental studies that the poorly reproducing individuals are often the ones with high parasite loads, this life-history view predicts that individuals with high reproductive investment will show high parasite prevalence. Here we provide an experimental confirmation of a positive association between parental investment levels of male great tits Parus major and the prevalence of Plasmodium spp, a hematozoa causing malaria in various bird species. We manipulated brood size, measured feeding effort of both males and females, and assessed the prevalence of the hemoparasite from blood smears. In enlarged broods the males, but not the females, showed significantly higher rates of food provisioning to the chicks, and the rate of malarial infection was found to be more than double in male, but not female, parents of enlarged broods. The findings show that there may be a trade-off between reproductive effort and parasite defense of the host and also suggest a mechanism for the well documented trade-off between current reproductive effort and parental survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malaria is one of the most important tropical and infectious diseases causing many deaths and enormous social and economic consequences, particularly in the developing countries. Despite of widely use of anti-malaria drugs and insecticide, the development of successful vaccines constitutes one of the main strategies to control malaria transmission. Several proteins expressed from blood stage such as merozoite surface proteins (MSP] or liver stage as circumsporozoite protein (CSP) are shown to be the targets of immune responses in humans and in animals. Thus, several studies have illustrated that natural infection and laboratory immunizations of humans and animals with Plasmodium sporozoite (SPZ) and its derivate-proteins (peptides) can elicit protection and control of parasite infection. However, a clear understanding of immune response against defined Plasmodium proteins should be the prerequisite conditions before any development of appropriate vaccines. In this order, our study focused on the immune responses to MSP2 (dimorphic and C-terminal fragments) in human and mice; and the mechanisms by which mouse infected hepatocytes present Plasmodium antigens to CD8+ T-cells to induce protective immunity in mice.¦The first part of this work shows that infected hepatocytes can present Plasmodium antigens to PbCSP-specific CD8+ T-cells and induce a protective immunity in mice. Here, this was addressed in vivo and showed that the infected hepatocytes were able of stimulating of primed-and naive-CD8+ T-cell clones and induced fully protective immunity against SPZ challenge. The role of infected hepatocytes in antigen presentation was illustrated here by their graft into immuno-deficient mice and depletion of cosspresenting dentritic cells (DCs) that are known to have key role in the activation of CD8+ T-cells during the liver cycle stage of Plasmodium.¦The second part of this project concerned the fine specificity of Ab responses regarding D and C regions of the two allelic families of MSP2 (3D7 and FC27). Covering of the two regions by overlapping-20 mers led to delineate the epitopes in the different endemic areas and different age groups of donors. The major epitopes characterizing D or C regions were conserved in different endemic areas (P12/P13 and P15/P16 for the 3D7-D, P23/24 and P25/26 for the FC27-D; P29/P30 for the C region). This offers thus, the possibility of a multi-epitope vaccine design including the major epitopes from the two domains of the two allelic MSP2 families. On the other, the 20 mers, particularly some major epitopes of the 3D7-Dregion (P12, P13 and P16) belonged to the epitopes that presented a high probability to be associated with protection in the children group [1 to 5 year-old). In addition, D and C LSP purified Abs (pAbs) recognized merozoite derived polypeptides and native proteins. A crossreactivity activity of homologous pAbs against the heterologous was also illustrated between the two allelic MSP2 parasites. Finally, the functional analysis of D regions pAbs showed an inhibition of Plasmodium falciparum growth suggesting the functional biological activity of the D region pAbs in the control of malaria.¦The last part of this project aimed the evaluation of the immunogenicity of the D and C region LSPs of the two allelic MSP2 families in the presence of adjuvants for the possible use in clinical trial study in humans. The MSP2 LSP mixture showed that D and C were immunogenic and defined limited epitopes (whose intensity of immune responses) depending on the adjuvants and mouse strain for the D regions. The major epitopes characterizing the C region were usually conserved in different strains of mouse and adjuvants used. Furthermore, the single region (either with D or C) immunization of mice confirmed the immunogenicity and the presence of their limited epitopes. We concluded that the possibility to finely delineate in animals the immune responses to antigens might help to select optimal antigen/adjuvant combinations to be tested later in clinical trials. Thus, formulation of glucopyranosyl-lipid A stable emulsion, GLA-SE (toll like receptor (TLR) 4 agonist) and its different combination (CpG: TLR9 agonist and GDQ: LR7 agonist) with MSP2 LSP was better than with alum, montanide ISA 720 (Mt) and virosome. Immunization of mice with allelic LSP did not show a crossreactivity between the two allelic MSP2 parasites unlike as humans, suggesting that the crossreactivity could be acquired during natural infection of the population who are usually exposed to both allelic parasite forms (3D7 and FC27).¦Nevertheless, similar epitope of D (P12, P13 and P25) and C (P29) regions have been found both in mice and human. This offers an opportunity to compare their epitopes in naïve immunized donors with LSPs and naturally infected populations in the endemic areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunization with a single dose of irradiated sporozoites is sufficient to induce protection against malaria in wild-type mice. Although this protection is classically attributed to conventional CD4+ and CD8+ T cells, several recent reports have suggested an important role for CD1-restricted NK T cells in immunity to malaria. In this study, we directly compared the ability of C57BL/6 wild-type and CD1-deficient mice to mount a protective immune response against Plasmodium berghei sporozoites. Our data indicate that CD1-restricted NK T cells are not required for protection in this model system. Moreover, specific IgG antibody responses to the P. berghei circumsporozoite repeat sequence were also unaffected by CD1 deficiency. Collectively, our data demonstrate that CD1-restricted NK T cells are dispensable for protective immunity to liver stage P. berghei infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Plasmodium vivax circumsporozoite (PvCS) protein is a major sporozoite surface antigen involved in parasite invasion of hepatocytes and is currently being considered as vaccine candidate. PvCS contains a dimorphic central repetitive fragment flanked by conserved regions that contain functional domains. METHODS: We have developed a chimeric 137-mer synthetic polypeptide (PvCS-NRC) that includes the conserved region I and region II-plus and the two natural repeat variants known as VK210 and VK247. The antigenicity of PvCS-NRC was tested using human sera from PNG and Colombia endemic areas and its immunogenicity was confirmed in mice with different genetic backgrounds, the polypeptide formulated either in Alum or GLA-SE adjuvants was assessed in inbred C3H, CB6F1 and outbred ICR mice, whereas a formulation in Montanide ISA51 was tested in C3H mice. RESULTS: Antigenicity studies indicated that the chimeric peptide is recognized by a high proportion (60-70%) of residents of malaria-endemic areas. Peptides formulated with either GLA-SE or Montanide ISA51 adjuvants induced stronger antibody responses as compared with the Alum formulation. Sera from immunized mice as well as antigen-specific affinity purified human IgG antibodies reacted with sporozoite preparations in immunofluorescence and Western blot assays, and displayed strong in vitro inhibition of sporozoite invasion (ISI) into hepatoma cells. CONCLUSIONS: The polypeptide was recognized at high prevalence when tested against naturally induced human antibodies and was able to induce significant immunogenicity in mice. Additionally, specific antibodies were able to recognize sporozoites and were able to block sporozoite invasion in vitro. Further evaluation of this chimeric protein construct in preclinical phase e.g. in Aotus monkeys in order to assess the humoral and cellular immune responses as well as protective efficacy against parasite challenge of the vaccine candidate must be conducted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a better understanding of the complex coevolutionary processes between hosts and parasites, accurate identification of the actors involved in the interaction is of fundamental importance. Blood parasites of the Order Haemosporidia, responsible for malaria, have become the focus of a broad range of studies in evolutionary biology. Interestingly, molecular-based studies on avian malaria have revealed much higher species diversity than previously inferred with morphology. Meanwhile, studies on bat haemosporidian have been largely neglected. In Europe, only one genus (Polychromophilus) and two species have been morphologically described. To evaluate the presence of potential cryptic species and parasite prevalence, we undertook a molecular characterization of Polychromophilus in temperate zone bats. We used a nested-PCR approach on the cytochrome b mitochondrial gene to detect the presence of parasites in 237 bats belonging to four different species and in the dipteran bat fly Nycteribia kolenatii, previously described as being the vector of Polychromophilus. Polychromophilus murinus was found in the four bat species and in the insect vector with prevalence ranging from 4% for Myotis myotis to 51% for M. daubentoni. By sequencing 682 bp, we then investigated the phylogenetic relationships of Polychromophilus to other published malarial lineages. Seven haplotypes were found, all very closely related, suggesting the presence of a single species in our samples. These haplotypes formed a well-defined clade together with Haemosporidia of tropical bats, revealing a worldwide distribution of this parasite mostly neglected by malarial studies since the 1980s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review describes the advances in malaria antigen discovery and vaccine development using the long synthetic peptide platforms that have been made available during the past 5 years. The most recent technical developments regarding peptide synthesis with the optimized production of large synthetic fragments are discussed. Clinical trials of long synthetic peptides are also reviewed. These trials demonstrated that long synthetic peptides are safe and immunogenic when formulated with various adjuvants. In addition, long synthetic peptides can elicit an antibody response in humans and have demonstrated inhibitory activity against parasite growth in vitro. Finally, new approaches to exploit the abundance of genomic data and the flexibility and speed of peptide synthesis are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate that repeated exposure to Lu. intermedia SGS induces the expression of potentially host-protective IFN-inducible genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The circumsporozoite (CS) protein is a major malaria sporozoite surface antigen currently being considered as vaccine candidate. Plasmodium vivax CS (PvCS) protein comprises a dimorphic central repeat fragment flanked by conserved regions that contain functional domains involved in parasite invasion of host cells. The protein amino (N-terminal) flank has a cleavage region (region I), essential for proteolytic processing prior to parasite invasion of liver cells. METHODS: We have developed a 131-mer long synthetic polypeptide (LSP) named PvNR1R2 that includes the N-terminal flank and the two natural repeat variant regions known as VK210 and VK247. We studied the natural immune response to this region in human sera from different malaria-endemic areas and its immunogenicity in mice. RESULTS: PvNR1R2 was more frequently recognized by sera from Papua New Guinea (PNG) (83%) than by samples from Colombia (24%) when tested by ELISA. The polypeptide formulated in Montanide ISA51 adjuvant elicited strong antibody responses in both C3H and CB6F1 mice strains. Antibodies from immunized mice as well as affinity-purified human IgG reacted with native protein by IFA test. Moreover, mouse immune sera induced strong (90%) in vitro inhibition of sporozoite invasion (ISI) of hepatoma cell lines. CONCLUSIONS: These results encourage further studies in non-human primates to confirm the elicitation of sporozoite invasion blocking antibodies, to assess cell mediated immune responses and the protective efficacy of this polypeptide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The leishmaniases are a group of diseases transmitted by the bite of Leishmania infected female phlebotomine sand flies. The diseases occur in different forms: localized, diffuse and muco-cutaneous leishmaniasis, and visceral leishmaniasis (VL). Inside macrophages, the main host cells of the obligate intracellular Leishmania parasites, nitric oxide synthase and arginase can regulate parasite killing or growth. In experimental leishmaniasis, we previously reported that non-healing disease is associated with higher arginase activity at site of pathology, correlating with local suppression of T cell function. To test whether these data translate to human leishmaniasis, the following study was initiated: I first tested the hypothesis that local suppression of T cell responses observed in persistent CL is associated with arginase induced L-arginine depletion. The results showed that arginase activity is increased at site of pathology compared to peripheral blood mononuclear cells (PBMCs) of LCL patients and intact skin of healthy controls. The phenotype of arginase expressing cells was identified in both compartments as CD15+ CD14|0W low-density granulocytes (LDGs). Finally, high arginase activity at site of pathology observed in cutaneous lesions of patients coincides with downregulation of CD3Ç, CD4 and CD8 molecules in CD4+ and CD8+ T cells at site of pathology. We concluded that increased arginase levels in lesions of LCL patients might contribute to CL pathogenesis by impairing T cell effector function at site of pathology. Next, it was tested whether arginase, an enzyme associated with immunosuppression, is higher in patients with VL and contributes to impaired T cell function through depletion of L- arginine. The results showed that higher level of arginase activity in the PBMC coincides with active phase of VL. Cells expressing arginase in PBMCs were also found to be LDGs. Importantly, increased arginase activity and frequency of degranulated neutrophils coincided with lower plasma L-arginine levels. Furthermore, downregulation of CD3Ç, in T cells correlated with low plasma arginine levels. VL/HIV co-infection is a frequently reported leishmaniasis complication in Ethiopia associated with poor prognosis, with up to 40% mortality rate and high relapse rate. Arginase activity was significantly increased in PBMCs and plasma of VL patients co-infected with HIV than in those having VL alone. Similarly, cells expressing arginase in PBMCs were found to be LDGs. In summary, the results presented here show that increased arginase activity is a marker of disease severity in human leishmaniasis with and without HIV; further, these results suggest that arginase mediated L-arginine depletion may inhibit T cell function and contribute to impaired control of infection. - Les leishmanioses sont un groupe de maladies transmises par la piqûre de mouches des sables femelles, appelées phlébotomes, ayant été infectées par Leishmania. Les maladies se manifestent sous différentes formes: la leishmaniose cutanée localisée, la leishmaniose diffuse et mucocutanée et la leishmaniose viscérale (LV). A l'intérieur des macrophages, les principales cellules hôtes des parasites, l'oxyde nitrique synthase et l'arginase, peuvent contrôler, soit la mort du parasite, soit sa croissance. Pour la leishmaniose expérimentale, nous avons déjà rapporté que le développement de lesions qui ne guérissent pas est associé à une activité plus grande d'arginase au site d'infection, en corrélation avec la suppression locale de la fonction des cellules T. Pour vérifier si ces données pouvaient s'appliquer à la leishmaniose humaine, j'ai d'abord vérifié l'hypothèse selon laquelle la suppression locale des réponses des cellules T observée dans la CL persistante, est associée à la la diminution de L- arginine induite par l'arginase. Les résultats ont montré que l'activité arginase est augmentée au site d'infection, par rapport aux cellules mononucléées du sang périphérique (CMSP) de patients LCL et à la peau intacte des contrôles sains. Le phénotype de cellules exprimant l'arginase a été identifié dans les deux compartiments comme des granulocytes CD15+ et CD 14" de basse densité (LDG). Enfin, l'activité arginase élevée au site de la pathologie, observée dans les lésions cutanées de patients, coïncide avec la reduction dde l'expression des molécules CD3Ç, CD4 et CD8 dans les cellules T CD4+ et CD8+ au site de pathologie . Nous avons conclu que l'augmentation des niveaux d'arginase dans les lésions de patients LCL pourrait contribuer à la pathogenèse de la CL, en altérant la fonction effectrice des celllules T au site de la pathologie. Ensuite, nous avons vérifié si l'arginase, une enzyme associée à l'immunosuppression, était plus élevée chez les patients atteints de VL et si elle contribuait à la mauvaise fonction des cellules T par la depletion en L-arginine. Les résultats ont montré qu'un niveau plus élevé de l'activité arginase dans les PBMC correspond à la phase active de la VL. Les cellules exprimant l'arginase dans les CMSP se sont révélées à être de type LDG . Il est important de souligner que l'augmentation de l'activité arginase et la fréquence des neutrophiles dégranulés a coïncidé avec des niveaux inférieurs de L-arginine plasmatique. En outre, la suppression de CD3Ç dans les cellules T correlle avec de faibles niveaux d'arginine plasmatique . Il a été fréquement rapporté que la co-infection VL/VIH est une complication de la leishmaniose en Ethiopie, associée à un mauvais prognostic, un taux de mortalité pouvant atteindre 40% et un pourcentage élevé de rechutes. L'activité de l'arginase a beaucoup plus augmentée dans les CMSP et le plasma de patients atteints de VL et co-infectés par le VIH, que chez ceux seulement attaints de VL. De même, les cellules exprimant l'arginase dans les CMSP sont aussi des LDG. En résumé, les résultats présentés ici montrent que l'augmentation de l'activité de l'arginase est un marqueur de gravité de la la leishmaniose humaine, avec ou sans VIH ; en outre, ces résultats suggèrent que la déplétion de L-arginine par l'arginase pourrait inhiber la fonction des cellules T et contribuer à un contrôle réduit de l'infection. - Les Leishmanioses sont des maladies parasitaires transmises par la piqûre d'une mouche des sables femelle (phlébotome) infectée par Leishmania. La maladie se manifeste sous différentes formes cliniques : la leishmaniose viscérale, une maladie progressive mortelle en l'absence de traitement, la leishmaniose muco-cutanée (MCL), la leishmaniose cutanée diffuse (LCD ) maladie mutilante, qui peut être de longue durée et la leishmaniose cutanée localisée maladie dont on guérit mais laissant une cicatrice inesthétique à vie. La maladie est largement répandue, elle affecte les populations les plus pauvres dans 98 pays et 350 millions de personnes à risque. Globalement on estime à 500.000 les nouveaux cas de la forme viscérale et 1-1.5 million ceux de la leishmaniose cutanée. La leishmaniose est fortement endémique en Ethiopie et se manifeste dans les formes viscérale et cutanée. Le parasite Leishmania infecte et se multiplie dans les cellules du système immunitaire, principalement les macrophages. Les macrophages sont capables de tuer le parasite Leishmania s'ils reçoivent des instructions correctes de la part d'autres cellules du système immunitaire, les lymphocytes. Les macrophages expriment deux enzymes importants, appelés oxide nitrique synthase inductible (iNOS ) et l'arginase, qui sont respectivement associés à la promotion de la mort du parasite et la multiplication. L'enzyme iNOS présent dans les macrophages métabolise l'arginine afin de générer de l'oxyde d'azote (NO) , une molécule effectrice nécessaire pour tuer le parasite . Au contraire, lorsque les macrophages sont activés d'une certaine manière conduisant à l'augmention de la régulation de l'arginase, ils métabolisent l'arginine en polyamines qui favorisent la croissance du parasite. Au cours du développement de la leishmaniose, les lymphocytes ne parviennent pas à transmettre aux macrophages les signaux nécessaires pour tuer le parasite. Les mécanismes cellulaires qui sont la cause de ce défaut, ne sont pas bien compris. En utilisant des modèles animaux, nous avons montré la régulation à la hausse de l'arginase au site de la pathologie, qui s'est traduit par l'altération de la fonction effectrice des lymphoctes. Nous avons initié des études de leishmaniose humaine en Ethiopie afin d'identifier le rôle de l'arginase dans la sévérité de la maladie. Nos résultats montrent, que l'arginase est fortement augmentée dans la lésion des patients CL, et dans le sang des patients VL et ceux co-infectés par VL / VIH. Le niveau d' arginase régulée à la hausse coincide avec l'expression inférieure d'une molécule de signalisation dans les lymphocytes, qui est essentielle à leur bon fonctionnement. En VL actif, l'augmentation d'arginase se traduit par la diminution de l'arginine qui est indispensable à la synthèse de NO et au bon fonctionnement des lymphocytes. Ainsi, l'incapacité des lymphocytes à envoyer des signaux adéquats aux macrophages pourrait être due à la suppression de l'arginine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficacy and safety of artemether-lumefantrine for the treatment of malaria in nonimmune populations are not well defined. In this study, 165 nonimmune patients from Europe and non-malarious areas of Colombia with acute, uncomplicated falciparum malaria or mixed infection including P. falciparum were treated with the six-dose regimen of artemether-lumefantrine. The parasitologic cure rate at 28 days was 96.0% for the per protocol population (119/124 patients). Median times to parasite clearance and fever clearance were 41.5 and 36.8 hours, respectively. No patient had gametocytes after Day 7. Treatment was well tolerated; most adverse events were mild to moderate and seemed to be related to malaria. There were few serious adverse events, none of which were considered to be drug-related. No significant effects on ECG or laboratory parameters were observed. In conclusion, the six-dose regimen of artemether-lumefantrine was effective and well tolerated in the treatment of acute uncomplicated falciparum malaria in nonimmune patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In response to the spread of parasite resistance to old antimalarial drugs, the large-scale implementation of artemisinine-based combinations has allowed to improving patient survival and reducing parasite transmission. Even though decreased susceptibility of parasites to artemisinine has been observed in South-East Asia, this phenomenon has no practical implications for travelers with uncomplicated malaria. The combination of artemether-lumefantrine is still very effective and safe, be it for P. falciparum or vivax. Intravenous administration of artesunate has allowed to significantly reducing case fatality rate of severe malaria patients when compared to quinine treatment in endemic areas. Artesunate is also recommended in travelers, but with close monitoring, especially for hematological parameters, in order to confirm its superiority.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general MHC-heterozygote advantage in parasite-infected organisms is often assumed, although there is little experimental evidence for this. We tested the response of MHC-congenic mice (F2 segregants) to malaria and found the course of infection to be significantly influenced by MHC haplotype, parasite strain, and host gender. However, the MHC heterozygotes did worse than expected from the average response of the homozygotes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Localization of human MHC class I-restricted T cell epitopes in the circumsporozoite (CS) protein of the human parasite Plasmodium falciparum is an important objective in the development of antimalarial vaccines. To this purpose, we synthesized a series of overlapping synthetic 20-mer peptides, spanning the entire sequence of the 7G8 CS molecule except for the central repeat B cell domain. The P.f.CS peptides were first tested for their ability to bind to the human MHC class I HLA-A2.1 molecule on T2, a human cell line. Subsequently, the use of a series of shorter peptide analogues allowed us to determine the optimal A2.1 binding sequence present in several of the 20-mers. Binding P.f.CS peptides were further tested for their capacity to activate PBL from HLA-A2.1+ immune donors living in a malaria-endemic area. Specific IFN-gamma production was detected in the supernatant of cultures of PBL from exposed individuals. Cytotoxic T cell lines and clones were derived from the PBL of one responder, and their activity was shown to be HLA-A2.1-restricted and specific for the peptide 334-342 of the CS protein. In addition, double transgenic HLA-A2.1 x human beta 2-microglobulin mice were immunized with peptide 1-10 of the CS protein. T cells derived from immune lymph nodes displayed a peptide-specific HLA-A2.1-restricted cytolytic activity after one in vitro stimulation.