95 resultados para Guadalhorce valley
Resumo:
The deposits of two volcanic debris avalanches (VDA I and II) that occur in the upper Maronne valley, northwest sector of Cantal Volcano, France, were studied to establish their mechanisms of formation, transport and deposition. These two volcanic debris avalanches that clearly differ with regard to their structures, textures and extensions, exemplify the wide spectrum of events associated with large-scale sector collapse. VDA I is voluminous (similar to1 km(3) in the upper Maronne valley) and widespread. The deposits comprise two distinct facies: the block facies that forms the intermediate and upper part of the unit and the mixed facies that crops out essentially at the base of the unit. The block facies consists of more or less brecciated lava, block-and-ash-flow breccia and pumice-flow tuff megablocks set in breccias resulting from block disaggregation. Mixing and differential movements are almost absent in this part of the VDA. The mixed facies consists of breccias rich in fine particles that originate from block disagregation, as well as being picked up from the substratum during movement. Mixing and differential movements are predominant in this zone. Analysis of fractures on lava megablocks suggests that shear stress during the initial sliding is the principal cause of fracture. These data strongly indicate that VDA I is purely gravitational and argue for a model in which the initial sliding mass transforms into a flow due to differential in situ fragmentation caused by the shear stress. VDA II is restricted to low-topography areas. Its volume, in the studied area, is about 0.3 km(3). The deposits consist of brecciated, rounded blocks and megablocks set in a fine-grained matrix composed essentially of volcanic glass. This unit is stratified, with a massive layer that contains all the megablocks at the base and in the intermediate part, and in the upper part a normally graded layer that contains only blocks <1 m in size. The different lithologies present are totally mixed. These observations suggest that VDA II may be of the Bezymianny-type and that it underwent a flow transformation from a turbulent to a stratified flow consisting of a basal hyperconcentrated laminar body overlain by a dilute layer. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Bulk and molecular stable C isotopic compositions and biomarker distributions provide evidence for a diverse community of algal and bacterial organisms in the sedimentary organic matter of a carbonate section throughout the Permian-Triassic (P/Tr) transition at the Idrijca Valley, Western Slovenia. The input of algae and bacteria in all the Upper Permian and Lower Scythian samples is represented by the predominance of C-15-C-22 n-alkanes, odd C-number alkylcyclohexanes, C-27 steranes and substantial contents Of C-21-C-30 acyclic isoprenoids. The occurrence of odd long-chain n-alkanes (C-22-C-30) and C29 steranes in all the samples indicate a contribution of continental material. The decrease of C-org and C-carb contents, increase of Rock-Eval oxygen indices, and C-13-enrichment of the kerogen suggest a decrease in anoxia of the uppermost Permian bottom water. The predominance of odd C-number alkylcycloalkanes, C-27 steranes, and C-17 n-alkanes with delta(13)C values similar to-30parts per thousand, and C-13-enrichment of the kerogens in the lowermost Scythian samples are evidence of greater algal productivity. This increased productivity was probably sustained by a high nutrient availability and changes of dissolved CO2 speciation associated to the earliest Triassic transgression. A decrease Of Corg content in the uppermost Scythian samples, associated to a C-13-depletetion in the carbonates (up to 4parts per thousand) and individual n-alkanes (up to 3.4parts per thousand) compared to the Upper Permian samples, indicate lowering of the primary productivity (algae, cyanobacteria) and/or higher degradation of the organic matter. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The present study analyses the spatial pattern of quaternary gravitational slope deformations (GSD) and historical/present-day instabilities (HPI) inventoried in the Swiss Rhone Valley. The main objective is to test if these events are clustered (spatial attraction) or randomly distributed (spatial independency). Moreover, analogies with the cluster behaviour of earthquakes inventoried in the same area were examined. The Ripley's K-function was applied to measure and test for randomness. This indicator allows describing the spatial pattern of a point process at increasing distance values. To account for the non-constant intensity of the geological phenomena, a modification of the K-function for inhomogeneous point processes was adopted. The specific goal is to explore the spatial attraction (i.e. cluster behaviour) among landslide events and between gravitational slope deformations and earthquakes. To discover if the two classes of instabilities (GSD and HPI) are spatially independently distributed, the cross K-function was computed. The results show that all the geological events under study are spatially clustered at a well-defined distance range. GSD and HPI show a similar pattern distribution with clusters in the range 0.75?9 km. The cross K-function reveals an attraction between the two classes of instabilities in the range 0?4 km confirming that HPI are more prone to occur within large-scale slope deformations. The K-function computed for GSD and earthquakes indicates that both present a cluster tendency in the range 0?10 km, suggesting that earthquakes could represent a potential predisposing factor which could influence the GSD distribution.
Resumo:
New G-banded karyotypes from populations of the common shrew Sorex araneus Linnaeus, 1758 provide a clearer picture of the distribution of chromosome races in central Europe. As expected according to their occurrence in neighbouring countries, the Jutland (kq, no), Laska (k/o) and Drnholec (ko, nr) races are also found in Germany. A new chromosome race "Rugen" (kq) is described from this Baltic Island. Together with the previously recorded races Ulm and Mooswald (kr), six chromosome races are now known from Germany. The resulting distribution pattern is characterized by high frequencies of different race-specific metacentrics at the periphery of the country and clines with decreasing frequencies towards the centre which is occupied by the Ulm race. This race is acrocentric for all chromosome arms involved in the observed race-specific fusions and represents a buffer between the surrounding, more metacentric races. According to the present distribution of these metacentrics, a scenario for the postglacial recolonization of central Europe by S. araneus populations on three different routes is proposed: from the east along the northern slopes of the Carpathian Arc, from the south-east along the Danube Valley and from the south-west through the Upper Rhine Valley.
Resumo:
The hydrogen and oxygen isotopes of water and the carbon isotope composition of dissolved inorganic carbon (DIC) from different aquifers at an industrial site, highly contaminated by organic pollutants representing residues of the former gas production, have been used as natural tracers to characterize the hydrologic system. On the basis of their stable isotope compositions as well as the seasonal variations, different groups of waters (precipitation, surface waters, groundwaters and mineral waters) as well as seasonably variable processes of mixing between these waters can clearly be distinguished. In addition, reservoir effects and infiltration rates can be estimated. In the northern part of the site an influence of uprising mineral waters within the Quaternary aquifers, presumably along a fault zone, can be recognized. Marginal infiltration from the Neckar River in the cast and surface water infiltration adjacent to a steep hill on the western edge of the site with an infiltration rate of about one month can also be resolved through the seasonal variation. Quaternary aquifers closer to the centre of the site show no seasonal variations, except for one borehole close to a former mill channel and another borehole adjacent to a rain water channel. Distinct carbon isotope compositions and concentrations of DIC for these different groups of waters reflect variable influence of different components of the natural carbon cycle: dissolution of marine carbonates in the mineral waters, biogenic, soil-derived CO2 in ground- and surface waters, as well as additional influence of atmospheric CO2 for the surface waters. Many Quaternary aquifer waters have, however, distinctly lower delta(13)C(DIC) values and higher DIC concentrations compared to those expected for natural waters. Given the location of contaminated groundwaters at this site but also in the industrially well-developed valley outside of this site, the most likely source for the low C-13(DIC) values is a biodegradation of anthropogenic organic substances, in particular the tar oils at the site.
Resumo:
PURPOSE: To understand the reasons for differences in the delineation of target volumes between physicians. MATERIAL AND METHODS: 18 Swiss radiooncology centers were invited to delineate volumes for one prostate and one head-and-neck case. In addition, a questionnaire was sent to evaluate the differences in the volume definition (GTV [gross tumor volume], CTV [clinical target volume], PTV [planning target volume]), the various estimated margins, and the nodes at risk. Coherence between drawn and stated margins by centers was calculated. The questionnaire also included a nonspecific series of questions regarding planning methods in each institution. RESULTS: Fairly large differences in the drawn volumes were seen between the centers in both cases and also in the definition of volumes. Correlation between drawn and stated margins was fair in the prostate case and poor in the head-and-neck case. The questionnaire revealed important differences in the planning methods between centers. CONCLUSION: These large differences could be explained by (1) a variable knowledge/interpretation of ICRU definitions, (2) variable interpretations of the potential microscopic extent, (3) difficulties in GTV identification, (4) differences in the concept, and (5) incoherence between theory (i.e., stated margins) and practice (i.e., drawn margins).
Resumo:
A nationwide survey was launched to investigate the use of fluoroscopy and establish national reference levels (RL) for dose-intensive procedures. The 2-year investigation covered five radiology and nine cardiology departments in public hospitals and private clinics, and focused on 12 examination types: 6 diagnostic and 6 interventional. A total of 1,000 examinations was registered. Information including the fluoroscopy time (T), the number of frames (N) and the dose-area product (DAP) was provided. The data set was used to establish the distributions of T, N and the DAP and the associated RL values. The examinations were pooled to improve the statistics. A wide variation in dose and image quality in fixed geometry was observed. As an example, the skin dose rate for abdominal examinations varied in the range of 10 to 45 mGy/min for comparable image quality. A wide variability was found for several types of examinations, mainly complex ones. DAP RLs of 210, 125, 80, 240, 440 and 110 Gy cm2 were established for lower limb and iliac angiography, cerebral angiography, coronary angiography, biliary drainage and stenting, cerebral embolization and PTCA, respectively. The RL values established are compared to the data published in the literature.
Resumo:
Unlike fragmental rockfall runout assessments, there are only few robust methods to quantify rock-mass-failure susceptibilities at regional scale. A detailed slope angle analysis of recent Digital Elevation Models (DEM) can be used to detect potential rockfall source areas, thanks to the Slope Angle Distribution procedure. However, this method does not provide any information on block-release frequencies inside identified areas. The present paper adds to the Slope Angle Distribution of cliffs unit its normalized cumulative distribution function. This improvement is assimilated to a quantitative weighting of slope angles, introducing rock-mass-failure susceptibilities inside rockfall source areas previously detected. Then rockfall runout assessment is performed using the GIS- and process-based software Flow-R, providing relative frequencies for runout. Thus, taking into consideration both susceptibility results, this approach can be used to establish, after calibration, hazard and risk maps at regional scale. As an example, a risk analysis of vehicle traffic exposed to rockfalls is performed along the main roads of the Swiss alpine valley of Bagnes.
Resumo:
On December 4th 2007, a 3-Mm3 landslide occurred along the northwestern shore of Chehalis Lake. The initiation zone is located at the intersection of the main valley slope and the northern sidewall of a prominent gully. The slope failure caused a displacement wave that ran up to 38 m on the opposite shore of the lake. The landslide is temporally associated with a rain-on-snow meteorological event which is thought to have triggered it. This paper describes the Chehalis Lake landslide and presents a comparison of discontinuity orientation datasets obtained using three techniques: field measurements, terrestrial photogrammetric 3D models and an airborne LiDAR digital elevation model to describe the orientation and characteristics of the five discontinuity sets present. The discontinuity orientation data are used to perform kinematic, surface wedge limit equilibrium and three-dimensional distinct element analyses. The kinematic and surface wedge analyses suggest that the location of the slope failure (intersection of the valley slope and a gully wall) has facilitated the development of the unstable rock mass which initiated as a planar sliding failure. Results from the three-dimensional distinct element analyses suggest that the presence, orientation and high persistence of a discontinuity set dipping obliquely to the slope were critical to the development of the landslide and led to a failure mechanism dominated by planar sliding. The three-dimensional distinct element modelling also suggests that the presence of a steeply dipping discontinuity set striking perpendicular to the slope and associated with a fault exerted a significant control on the volume and extent of the failed rock mass but not on the overall stability of the slope.
Resumo:
The Mississippi Valley-type zinc and lead deposits at Topla (250,150 metric tons (t) of ore grading 1.0 wt % Zn and 3.3 wt % Pb) and Mezica (19 million metric tons (Mt) of ore grading 5.3 wt % Pb and 2.7 wt % Zn) occur within the Middle to Upper Triassic platform carbonate rocks of the northern Karavanke/Drau Range geotectonic units of the Eastern Alps, Slovenia. The ore and host rocks of these deposits have been investigated by a combination of inorganic and organic geochemical methods to determine major, trace, and rare earth element (REE) concentrations, hydrocarbon distribution, and stable isotope ratios of carbonates, kerogen, extractable organic matter, and individual hydrocarbons. These data combined with sedimentological evidence provide insight into the paleoenvironmental conditions at the site of ore formation. The carbonate isotope composition, the REE patterns, and the distribution of hydrocarbon biomarkers (normal alkanes and steranes) suggest a marine depositional environment. At Topla, a relatively high concentration of redox sensitive trace elements (V, Mo, U) in the host dolostones and REE patterns parallel to that of the North American shale composite suggest that sediments were deposited in a reducing environment. Anoxic conditions enhanced the preservation of organic matter and resulted in relatively higher total organic carbon contents (up to 0.4 wt %). The isotopic composition of the kerogen (delta C-13(kerogon) = -29.4 to -25.0 parts per thousand, delta N-15(kerogen) = -.13.6 to 6.8 parts per thousand) suggests that marine algae and/or bacteria were the main source of organic carbon with a very minor contribution from detrital continental plants and a varying degree of alteration. Extractable organic matter from Topla ore is generally depleted in C-13 compared to the associated kerogen, which is consistent with an indigenous source of the bitumens. The mineralization correlates with delta N-15(kerogen) values around 0 per mil, C-13 depleted kerogen, C-13 enriched n-heptadecane, and relatively high concentrations of bacteria] hydrocarbon biomarkers, indicating a high cyanobacterial biomass at the site of ore formation. Abundant dissimilatory sulfate-reducing bacteria, feeding on the cyanobacterial remains, led to accumulation of biogenic H2S in the pore water of the sediments. This biogenic H2S was mainly incorporated into sedimentary organic matter and diagenetic pyrite. Higher bacterial activity at the ore site also is indicated by specific concentration ratios of hydrocarbons, which are roughly correlated with total Pb plus Zn contents. This correlation is consistent with mixing of hydrothermal metal-rich, fluids and local bacteriogenic sulfide sulfur. The new geochemical data provide supporting evidence that Topla is a low-temperature Mississippi Valley-type deposit formed in an anoxic supratidal saline to hypersaline environment. A laminated cyanobacterial mat, with abundant sulfate-reducing bacteria was the main site of sulfate reduction.
Resumo:
The age of the patient is of prime importance when assessing the radiological risk to patients due to medical X-ray exposures and the total detriment to the population due to radiodiagnostics. In order to take into account the age-specific radiosensitivity, three age groups are considered: children, adults and the elderly. In this work, the relative number of examinations carried out on paediatric and geriatric patients is established, compared with adult patients, for radiodiagnostics as a whole, for dental and medical radiology, for 8 radiological modalities as well as for 40 types of X-ray examinations. The relative numbers of X-ray examinations are determined based on the corresponding age distributions of patients and that of the general population. Two broad groups of X-ray examinations may be defined. Group A comprises conventional radiography, fluoroscopy and computed tomography; for this group a paediatric patient undergoes half the number of examinations as that of an adult, and a geriatric patient undergoes 2.5 times more. Group B comprises angiography and interventional procedures; for this group a paediatric patient undergoes a one-fourth of the number of examinations carried out on an adult, and a geriatric patient undergoes five times more.
Resumo:
Quality assurance programmes are becoming a common practice in the field of mammography. At the present time several recommendations exist and different test objects are used to optimize this radiological procedure. The goal of this study was to check if geographically distant centres using different quality control procedures were comparable when using a common objective way of assessing image quality. The results show that consensus still needs to be found among radiologists to reach a satisfactory level of harmony between patient doses and image quality in Europe.
Resumo:
The shape of the energy spectrum produced by an x-ray tube has a great importance in mammography. Many anode-filtration combinations have been proposed to obtain the most effective spectrum shape for the image quality-dose relationship. On the other hand, third generation synchrotrons such as the European Synchrotron Radiation Facility in Grenoble are able to produce a high flux of monoenergetic radiation. It is thus a powerful tool to study the effect of beam energy on image quality and dose in mammography. An objective method was used to evaluate image quality and dose in mammography with synchrotron radiation and to compare them to standard conventional units. It was performed systematically in the energy range of interest for mammography through the evaluation of a global image quality index and through the measurement of the mean glandular dose. Compared to conventional mammography units, synchrotron radiation shows a great improvement of the image quality-dose relationship, which is due to the beam monochromaticity and to the high intrinsic collimation of the beam, which allows the use of a slit instead of an anti-scatter grid for scatter rejection.