33 resultados para Granulosa Cell Tumor
Resumo:
The pathogenesis of hepatosplenic T-cell lymphoma (HSTL), a rare entity mostly derived from γδ T cells and usually with a fatal outcome, remains largely unknown. In this study, HSTL samples (7γδ and 2αβ) and the DERL2 HSTL cell line were subjected to combined gene-expression profiling and array-based comparative genomic hybridization. Compared with other T-cell lymphomas, HSTL had a distinct molecular signature irrespective of TCR cell lineage. Compared with peripheral T-cell lymphoma, not otherwise specified and normal γδ T cells, HSTL overexpressed genes encoding NK-cell-associated molecules, oncogenes (FOS and VAV3), the sphingosine-1-phosphatase receptor 5 involved in cell trafficking, and the tyrosine kinase SYK, whereas the tumor-suppressor gene AIM1 (absent in melanoma 1) was among the most down-expressed. We found highly methylated CpG islands of AIM1 in DERL2 cells, and decitabine treatment induced a significant increase in AIM1 transcripts. Syk was present in HSTL cells and DERL2 cells contained phosphorylated Syk and were sensitive to a Syk inhibitor in vitro. Genomic profiles confirmed recurrent isochromosome 7q (n = 6/9) without alterations at the SYK and AIM1 loci. Our results identify a distinct molecular signature for HSTL and highlight oncogenic pathways that offer rationale for exploring new therapeutic options such as Syk inhibitors and demethylating agents.
Resumo:
INTRODUCTION: Dendritic cells (DCs) are the most important antigen-presenting cell population for activating antitumor T-cell responses; therefore, they offer a unique opportunity for specific targeting of tumors. AREAS COVERED: We will discuss the critical factors for the enhancement of DC vaccine efficacy: different DC subsets, types of in vitro DC manufacturing protocol, types of tumor antigen to be loaded and finally different adjuvants for activating them. We will cover potential combinatorial strategies with immunomodulatory therapies: depleting T-regulatory (Treg) cells, blocking VEGF and blocking inhibitory signals. Furthermore, recommendations to incorporate these criteria into DC-based tumor immunotherapy will be suggested. EXPERT OPINION: Monocyte-derived DCs are the most widely used DC subset in the clinic, whereas Langerhans cells and plasmacytoid DCs are two emerging DC subsets that are highly effective in eliciting cytotoxic T lymphocyte responses. Depending on the type of tumor antigens selected for loading DCs, it is important to optimize a protocol that will generate highly potent DCs. The future aim of DC-based immunotherapy is to combine it with one or more immunomodulatory therapies, for example, Treg cell depletion, VEGF blockage and T-cell checkpoint blockage, to elicit the most optimal antitumor immunity to induce long-term remission or even cure cancer patients.
Resumo:
The immune system has the potential to protect from malignant diseases for extended periods of time. Unfortunately, spontaneous immune responses are often inefficient. Significant effort is required to develop reliable, broadly applicable immunotherapies for cancer patients. A major innovation was transplantation with hematopoietic stem cells from genetically distinct donors for patients with hematologic malignancies. In this setting, donor T cells induce long-term remission by keeping cancer cells in check through powerful allogeneic graft-versus-leukemia effects. More recently, a long awaited breakthrough for patients with solid tissue cancers was achieved, by means of therapeutic blockade of T cell inhibitory receptors. In untreated cancer patients, T cells are dysfunctional and remain in a state of T cell "exhaustion". Nonetheless, they often retain a high potential for successful defense against cancer, indicating that many T cells are not entirely and irreversibly exhausted but can be mobilized to become highly functional. Novel antibody therapies that block inhibitory receptors can lead to strong activation of anti-tumor T cells, mediating clinically significant anti-cancer immunity for many years. Here we review these new treatments and the current knowledge on tumor antigen-specific T cells.