36 resultados para Glycerol Triritrate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Colonic endoscopic submucosal dissection (ESD) is challenging as a result of the limited ability of conventional endoscopic instruments to achieve traction and exposure. The aim of this study was to evaluate the feasibility of colonic ESD in a porcine model using a novel endoscopic surgical platform, the Anubiscope (Karl Storz, Tüttlingen, Germany), equipped with two working channels for surgical instruments with four degrees of freedom offering surgical triangulation. METHODS: Nine ESDs were performed by a surgeon without any ESD experience in three swine, at 25, 15, and 10 cm above the anal verge with the Anubiscope. Sixteen ESDs were performed by an experienced endoscopist in five swine using conventional endoscopic instruments. Major ESD steps included the following for both groups: scoring the area, submucosal injection of glycerol, precut, and submucosal dissection. Outcomes measured were as follows: dissection time and speed, specimen size, en bloc dissection, and complications. RESULTS: No perforations occurred in the Anubis group, while there were eight perforations (50 %) in the conventional group (p = 0.02). Complete and en bloc dissections were achieved in all cases in the Anubis group. Mean dissection time for completed cases was statistically significantly shorter in the Anubis group (32.3 ± 16.1 vs. 55.87 ± 7.66 min; p = 0.0019). Mean specimen size was higher in the conventional group (1321 ± 230 vs. 927.77 ± 229.96 mm(2); p = 0.003), but mean dissection speed was similar (35.95 ± 18.93 vs. 23.98 ± 5.02 mm(2)/min in the Anubis and conventional groups, respectively; p = 0.1). CONCLUSIONS: Colonic ESDs were feasible in pig models with the Anubiscope. This surgical endoscopic platform is promising for endoluminal surgical procedures such as ESD, as it is user-friendly, effective, and safe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUME : Les aquaporines (AQPs) sont des protéines membranaires perméables à l'eau (aquaporines strictes) et, pour certaines d'entre elles, également au glycérol (aquaglycéroporines). Ces protéines sont présentes dans les bactéries, les plantes et les différents organes des mammifères. Dans le cerveau, la moindre augmentation de volume hydrique peut avoir de graves conséquences sur son fonctionnement, d'où l'importance de la régulation de l'homéostasie de l'eau grâce aux AQPs. L'AQP4, une aquaporine stricte, est présente dans les astrocytes et est impliquée dans la formation et la résorption des oedèmes cérébraux. En revanche, l'AQP9 est une aquaglycéroporine, qui est localisée non seulement dans les astrocytes mais également dans les neurones catécholaminergiques. Bien que la distribution de l'AQP4 dans le cerveau soit clairement établie, la présence de l'AQP9 est toujours une donnée controversée et son rôle fonctionnel dans le système nerveux central n'est pas connu. Par ailleurs, aucune donnée n'existe sur l'expression des AQP4 et 9 lors de la différenciation de cellules souches neurales foetales (CSNf) en astrocytes ou en neurones catécholaminergiques. Dans la première partie de ce travail, un protocole a été mis au point permettant de différencier des CSNf de souris en astrocytes et neurones, dont des neurones catécholaminergiques. La caractérisation des cultures de CSNf et des cultures mixtes par immunofluorescence a permis de montrer que l'immunomarquage AQP9 est présent dans les CSNf et est conservé lors de leur différenciation en astrocytes ou en neurones catécholaminergiques. Les résultats obtenus ont mis en évidence une très bonne corrélation entre l'expression de la TH (tyrosine hydroxylase: enzyme limitante de la synthèse des catécholamines) et celle de l'AQP9 lors de la différenciation des CSNf en neurones catécholaminergiques. Par contre, l'immunomarquage AQP4 n'est pas présent dans les CSNf alors qu'il est observé dans les astrocytes. De plus, aucun immunomarquage AQP4 ou AQP9 n'a été observé dans les neurones NIAP2-positifs. Dans la deuxième partie de ce travail, l'expression des AQP4 et 9 a été quantifiée dans les CSNf ainsi que dans trois populations d'astrocytes présentant des propriétés métaboliques différentes. Ces trois populations astrocytaires sont issues de la différenciation des CSNf par le CNTF, le LIF ou le sérum de veau foetal. Les analyses par RTPCR quantitative et western blot ont montré une augmentation de l'expression de l'AQP9 et de l'AQP4 corrélée à l'acquisition de propriétés métaboliques spécifiques des astrocytes matures. Dans la dernière partie, la technique d'ARN interférents a permis d'étudier le rôle fonctionnel de l'AQP9 dans le modèle de culture pure d'astrocytes différenciés par le sérum. L'inhibition de l'expression d'AQP9 entraîne une diminution de la perméabilité au glycérol et une augmentation de l'utilisation de glucose, corrélée à une stimulation du métabolisme oxydatif astrocytaire. En revanche, 1a baisse d'expression d'AQP9 n'a aucun effet sur la glycolyse anaérobie ni sur la libération du lactate. En conclusion, dans ce modèle in vitro, seule l'AQP9 est exprimée dans les CSNf et les neurones catécholaminergiques alors que dans Ies astrocytes, à la fois l'AQP9 et l'AQP4 sont exprimées. Cette distribution est identique à celle observée in vivo et confirme la localisation spécifique de l'AQP9 dans les neurones catécholaminergiques. De plus, ces résultats montrent, pour la première fois, l'implication de l'AQP9 dans la perméabilité des astrocytes au glycérol et son implication dans le métabolisme énergétique astrocytaire. ABSTACT : Aquaporins (AQPs) are membrane proteins permeable to water (orthodoxes aquaporins) and some of them are also permeable to glycerol (aquaglyceroporins). These proteins are widely expressed in bacteria, plants and mammals. AQP water homeostasis regulation in brain is of primary importance as the brain volume cannot increase. AQP4, an orthodoxe aquaporin, is present in astrocytes and seems to be involved in edema formation and resorption. On the other hand, AQP9 is an aquaglyceroporin which is localised not only in astrocytes but also in catecholaminergic neurons. Although AQP4 distribution in brain is clearly established, the presence of AQP9 is still a discussed data and its functional role in the central nervous system is unknown. In addition, no data exists on AQP4 or AQP9 expression during fetal neural stem cells (fNSC) differentiation into astrocytes or catecholaminergic neurons. In the first part of this work, a protocol was developed to differentiate mouse fNSC into astrocytes and neurons, with the aim to obtain catecholaminergic neurons. By immunefluorescence, we have shown that AQP9 is expressed in fNSC cultures and also in astrocytes and catecholaminergic neurons in mixt cultures. The results obtained highlighted a very good correlation between TH expression (tyrosin hydroxylase being a limiting enzyme of catecholamines synthesis) and AQP9 in fNSC and all along their differentiation into catecholaminergic neurons. On the other hand, AQP4 immunolabelling is not observed in fNSC whereas it is in astrocytes. Moreover, neitheir AQP4, nor AQP9 immunoreactivity was observed in MAP2-positive neurons. In the second part of this work, AQP4 and AQP9 expression was quantified in fNSC and in three populations of astrocytes presenting different metabolic properties. These three astrocyte populations result from fNSC differentiation by addition of CNTF, LIF or fetal calf serum. Quantitative RT-PCR and western blot analyses have shown an increase in both AQP4 and AQP9 expression, correlated with the acquisition of specific metabolic properties of mature astrocytes. In the last part, siRNA were used to study the functional role of AQP9 in the pure astrocyte culture model differentiated by addition of fetal calf serum. Inhibition of AQP9 expression leads to a decrease of glycerol uptake and to an increase of glucose uptake, correlated with a stimulation of the astrocyte oxydative metabolism. On the other hand, inhibition of AQP9 expression does not have any effect on anaerobic glycolysis nor on lactate release. In conclusion, in this in vitro model, only AQP9 is expressed in fNSC and in catecholaminergic neurons whereas in astrocytes, both AQP9 and AQP4 are expressed. This distribution is identical to that observed in vivo and confirms the specific AQP9 localization in catecholaminergic neurons. IVloreover, these results show, for the first time, that AQP9 is implicated in glycerol uptake and in astrocyte energetic metabolism. Résumé large public : Les aquaporines, des protéines localisées dans les membranes cellulaires sont, comme leur nom l'indique, des canaux à eau. Pendant longtemps, il a été considéré que l'eau diffusait librement dans et à travers les cellules; la caractérisation des AQPs a révolutionné la vision des scientifiques concernant les mouvements d'eau entre les différents compartiments infra et extracellulaires, et a d'ailleurs valu le Prix Nobel à Peter Agre en 1992. Certaines AQPs, dites "strictes", laissent passer uniquement l'eau et participent au contrôle du volume hydrique. Ce contrôle est particulièrement important pour le bon fonctionnement du cerveau en raison de la présence de la boîte crânienne qui limite les variations de volume. D'autres AQPs, les aquaglycéroporines, sont perméables non seulement à l'eau mais également à d'autres molécules comme le glycérol. Elles facilitent, par exemple, la sortie du glycérol des cellules graisseuses et sa capture par les cellules du foie afin de produire du glucose en période de jeûne. Le cerveau est principalement composé de deux types de cellules: les neurones et les cellules gliales, majoritairement des astrocytes. L'AQP4, une AQP stricte, est présente dans les astrocytes et joue un rôle dans la formation et la résorption des oedèmes cérébraux. L'AQP9, une aquaglycéroporine, est également présente dans les astrocytes et dans une population spécifique de neurones, les neurones catécholaminergiques, touchés dans la maladie de Parkinson. A ce jour, la présence de l'AQP9 dans le cerveau est une donnée controversée et son rôle fonctionnel est inconnu. Ce travail de thèse a permis de montrer que l'AQP9 est bien présente d'une part dans les cellules souches neurales foetales et d'autre ,part dans les astrocytes et neurones catécholaminergiques issus de leur différenciation. De plus, ces expériences ont mis en évidence un rôle de l'AQP9 dans l'entrée du glycérol dans les astrocytes, ce qui pourrait être bénéfique dans des conditions d'ischémie. Enfin, les .résultats de cette étude suggèrent également un rôle de l'AQP9 dans le métabolisme énergétique des astrocytes. L'ensemble de ces travaux démontre le rôle important de l'AQP9 dans le cerveau et ouvre de nouvelles perspectives quant aux rôles des AQPs dans des situations pathologiques telles que l'ischémie cérébrale ou encore la maladie de Parkinson.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In common with many other plasma membrane glycoproteins of eukaryotic origin, the promastigote surface protease (PSP) of the protozoan parasite Leishmania contains a glycosyl-phosphatidylinositol (GPI) membrane anchor. The GPI anchor of Leishmania major PSP was purified following proteolysis of the PSP and analyzed by two-dimensional 1H-1H NMR, compositional and methylation linkage analyses, chemical and enzymatic modifications, and amino acid sequencing. From these results, the structure of the GPI-containing peptide was found to be Asp-Gly-Gly-Asn-ethanolamine-PO4-6Man alpha 1-6Man alpha 1-4GlcN alpha 1-6myo-inositol-1-PO4-(1-alkyl-2-acyl-glycerol). The glycan structure is identical to the conserved glycan core regions of the GPI anchor of Trypanosoma brucei variant surface glycoprotein and rat brain Thy-1 antigen, supporting the notion that this portion of GPIs are highly conserved. The phosphatidylinositol moiety of the PSP anchor is unusual, containing a fully saturated, unbranched 1-O-alkyl chain (mainly C24:0) and a mixture of fully saturated unbranched 2-O-acyl chains (C12:0, C14:0, C16:0, and C18:0). This lipid composition differs significantly from those of the GPIs of T. brucei variant surface glycoprotein and mammalian erythrocyte acetylcholinesterase but is similar to that of a family of glycosylated phosphoinositides found uniquely in Leishmania.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salt and heat stresses, which are often combined in nature, induce complementing defense mechanisms. Organisms adapt to high external salinity by accumulating small organic compounds known as osmolytes, which equilibrate cellular osmotic pressure. Osmolytes can also act as "chemical chaperones" by increasing the stability of native proteins and assisting refolding of unfolded polypeptides. Adaptation to heat stress depends on the expression of heat-shock proteins, many of which are molecular chaperones, that prevent protein aggregation, disassemble protein aggregates, and assist protein refolding. We show here that Escherichia coli cells preadapted to high salinity contain increased levels of glycine betaine that prevent protein aggregation under thermal stress. After heat shock, the aggregated proteins, which escaped protection, were disaggregated in salt-adapted cells as efficiently as in low salt. Here we address the effects of four common osmolytes on chaperone activity in vitro. Systematic dose responses of glycine betaine, glycerol, proline, and trehalose revealed a regulatory effect on the folding activities of individual and combinations of chaperones GroEL, DnaK, and ClpB. With the exception of trehalose, low physiological concentrations of proline, glycerol, and especially glycine betaine activated the molecular chaperones, likely by assisting local folding in chaperone-bound polypeptides and stabilizing the native end product of the reaction. High osmolyte concentrations, especially trehalose, strongly inhibited DnaK-dependent chaperone networks, such as DnaK+GroEL and DnaK+ClpB, likely because high viscosity affects dynamic interactions between chaperones and folding substrates and stabilizes protein aggregates. Thus, during combined salt and heat stresses, cells can specifically control protein stability and chaperone-mediated disaggregation and refolding by modulating the intracellular levels of different osmolytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tight regulation of the MAP kinase Hog1 is crucial for survival under changing osmotic conditions. Interestingly, we found that Hog1 phosphorylates multiple upstream components, implying feedback regulation within the signaling cascade. Taking advantage of an unexpected link between glucose availability and Hog1 activity, we used quantitative single cell measurements and computational modeling to unravel feedback regulation operating in addition to the well-known adaptation feedback triggered by glycerol accumulation. Indeed, we found that Hog1 phosphorylates its activating kinase Ssk2 on several sites, and cells expressing a non-phosphorylatable Ssk2 mutant are partially defective for feedback regulation and proper control of basal Hog1 activity. Together, our data suggest that Hog1 activity is controlled by intertwined regulatory mechanisms operating with varying kinetics, which together tune the Hog1 response to balance basal Hog1 activity and its steady-state level after adaptation to high osmolarity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spiroplasmas are helical and motile members of a cell wall-less eubacterial group called Mollicutes. Although all spiroplasmas are associated with arthropods, they exhibit great diversity with respect to both their modes of transmission and their effects on their hosts; ranging from horizontally transmitted pathogens and commensals to endosymbionts that are transmitted transovarially (i.e., from mother to offspring). Here we provide the first genome sequence, along with proteomic validation, of an endosymbiotic inherited Spiroplasma bacterium, the Spiroplasma poulsonii MSRO strain harbored by Drosophila melanogaster. Comparison of the genome content of S. poulsonii with that of horizontally transmitted spiroplasmas indicates that S. poulsonii has lost many metabolic pathways and transporters, demonstrating a high level of interdependence with its insect host. Consistent with genome analysis, experimental studies showed that S. poulsonii metabolizes glucose but not trehalose. Notably, trehalose is more abundant than glucose in Drosophila hemolymph, and the inability to metabolize trehalose may prevent S. poulsonii from overproliferating. Our study identifies putative virulence genes, notably, those for a chitinase, the H2O2-producing glycerol-3-phosphate oxidase, and enzymes involved in the synthesis of the eukaryote-toxic lipid cardiolipin. S. poulsonii also expresses on the cell membrane one functional adhesion-related protein and two divergent spiralin proteins that have been implicated in insect cell invasion in other spiroplasmas. These lipoproteins may be involved in the colonization of the Drosophila germ line, ensuring S. poulsonii vertical transmission. The S. poulsonii genome is a valuable resource to explore the mechanisms of male killing and symbiont-mediated protection, two cardinal features of many facultative endosymbionts. IMPORTANCE: Most insect species, including important disease vectors and crop pests, harbor vertically transmitted endosymbiotic bacteria. These endosymbionts play key roles in their hosts' fitness, including protecting them against natural enemies and manipulating their reproduction in ways that increase the frequency of symbiont infection. Little is known about the molecular mechanisms that underlie these processes. Here, we provide the first genome draft of a vertically transmitted male-killing Spiroplasma bacterium, the S. poulsonii MSRO strain harbored by D. melanogaster. Analysis of the S. poulsonii genome was complemented by proteomics and ex vivo metabolic experiments. Our results indicate that S. poulsonii has reduced metabolic capabilities and expresses divergent membrane lipoproteins and potential virulence factors that likely participate in Spiroplasma-host interactions. This work fills a gap in our knowledge of insect endosymbionts and provides tools with which to decipher the interaction between Spiroplasma bacteria and their well-characterized host D. melanogaster, which is emerging as a model of endosymbiosis.