357 resultados para Glucose-transporter Isoforms


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We used a hemolytic plaque assay for insulin to determine whether the same pancreatic B cells respond to D-glucose, 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (BCH) and the association of this nonmetabolized analogue of L-leucine with either the monomethyl ester of succinic acid (SME) or the dimethyl ester of L-glutamic acid (GME). During a 30-min incubation in the absence of D-glucose, BCH alone (5 mM) had no effect on insulin release. In contrast, the combination of BCH with either SME (10 mM) or GME (3 mM) stimulated insulin release to the same extent observed in the sole presence of 16.7 mM D-glucose. The effects of BCH plus SME and BCH plus GME on both percentage of secreting B cells and total insulin output were little affected in the presence of D-glucose concentrations ranging from 0 to 16.7 mM. Varying the concentration of SME from 2 to 10 mM also did not influence these effects. In other experiments, the very same B cells were first exposed 45 min to 16.7 mM D-glucose, then incubated 45 min in the presence of only BCH and SME. Under these conditions, most (80.3 +/- 2.5%) of the cells contributing to insulin release did so during both incubation periods. Furthermore, virtually all cells responding to BCH and SME during the second incubation corresponded to cells also responsive to D-glucose during the first incubation. Similar observations were made when the sequence of the two incubations was reversed.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Activation of the peroxisome proliferator-activated receptor (PPAR)-alpha increases lipid catabolism and lowers the concentration of circulating lipid, but its role in the control of glucose metabolism is not as clearly established. Here we compared PPARalpha knockout mice with wild type and confirmed that the former developed hypoglycemia during fasting. This was associated with only a slight increase in insulin sensitivity but a dramatic increase in whole-body and adipose tissue glucose use rates in the fasting state. The white sc and visceral fat depots were larger due to an increase in the size and number of adipocytes, and their level of GLUT4 expression was higher and no longer regulated by the fed-to-fast transition. To evaluate whether these adipocyte deregulations were secondary to the absence of PPARalpha from liver, we reexpresssed this transcription factor in the liver of knockout mice using recombinant adenoviruses. Whereas more than 90% of the hepatocytes were infected and PPARalpha expression was restored to normal levels, the whole-body glucose use rate remained elevated. Next, to evaluate whether brain PPARalpha could affect glucose homeostasis, we activated brain PPARalpha in wild-type mice by infusing WY14643 into the lateral ventricle and showed that whole-body glucose use was reduced. Hence, our data show that PPARalpha is involved in the regulation of glucose homeostasis, insulin sensitivity, fat accumulation, and adipose tissue glucose use by a mechanism that does not require PPARalpha expression in the liver. By contrast, activation of PPARalpha in the brain stimulates peripheral glucose use. This suggests that the alteration in adipocyte glucose metabolism in the knockout mice may result from the absence of PPARalpha in the brain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the influence of obesity on the regulation of myocardial glucose metabolism following protein kinase C (PKC) activation in obese (fa/fa) and lean (Fa/?) Zucker rats. DESIGN: Isolated hearts obtained from 17-week-old lean and obese Zucker rats were perfused with 200 nM phorbol 12-myristate 13-acetate (PMA) for different time periods prior to the evaluation of PKC and GLUT-4 translocation. For metabolic studies isolated hearts from 48 h starved Zucker rats were perfused with an erythrocytes-enriched buffer containing increased concentrations (10-100 nM) of PMA. MEASUREMENTS: Immunodetectable PKC isozymes and GLUT-4 were determined by Western blots. Glucose oxidation and glycolysis were evaluated by measuring the myocardial release of 14CO2 and 3H2O from [U-14C]glucose and [5-3H]glucose, respectively. RESULTS: PMA (200 nM) induced maximal translocation of ventricular PKCalpha from the cytosol to the membranes within 10 min. This translocation was 2-fold lower in the heart from obese rats when compared to lean rats. PMA also induced a significant translocation of ventricular GLUT-4 from the microsomal to the sarcolemmal fraction within 60 min in lean but not in obese rats. Rates of basal cardiac glucose oxidation and glycolysis in obese rats were approximately 2-fold lower than those of lean rats. Perfusion with increasing concentrations of PMA (10-100 nM) led to a significant decrease of cardiac glucose oxidation in lean but not in obese rats. CONCLUSION: Our results show that in the heart of the genetically obese Zucker rat, the impairment in PKCalpha activation is in line with a diminished activation of GLUT-4 as well as with the lack of PMA effect on glucose oxidation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A role for glucose in the control of feeding has been proposed, but its precise physiological importance is unknown. Here, we evaluated feeding behavior in glut2-null mice, which express a transgenic glucose transporter in their beta-cells to rescue insulin secretion (ripglut1;glut2-/- mice). We showed that in the absence of GLUT2, daily food intake was increased and feeding initiation and termination following a fasting period were abnormal. This was accompanied by suppressed regulation of hypothalamic orexigenic and anorexigenic neuropeptides expression during the fast-to-refed transition. In these conditions, however, there was normal regulation of the circulating levels of insulin, leptin, or glucose but a loss of regulation of plasma ghrelin concentrations. To evaluate whether the abnormal feeding behavior was due to suppressed glucose sensing, we evaluated feeding in response to intraperitoneal or intracerebroventricular glucose or 2-deoxy-D-glucose injections. We showed that in GLUT2-null mice, feeding was no longer inhibited by glucose or activated by 2-deoxy-D-glucose injections and the regulation of hypothalamic neuropeptide expression by intracerebroventricular glucose administration was lost. Together, these data demonstrate that absence of GLUT2 suppressed the function of central glucose sensors, which control feeding probably by regulating the hypothalamic melanocortin pathway. Furthermore, inactivation of these glucose sensors causes overeating.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The signaling pathway that regulates glucose-stimulated insulin secretion depends on glucose metabolism, which is itself controlled by glucokinase. In a recent issue of Cell, show that altering N-glycosylation of the GLUT2 glucose transporter prevents its anchoring and retention at the cell surface; this impairs glucose uptake and insulin secretion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

While chronic hypoglycaemia has been reported to increase unidirectional glucose transport across the blood-brain barrier (BBB) and to increase GLUT1 expression at the endothelium, the effect on steady-state brain d-glucose and brain glycogen content is currently unknown. Brain glucose and glycogen concentrations were directly measured in vivo using localized 13C magnetic resonance spectroscopy (MRS) following 12-14 days of hypoglycaemia. Brain glucose content was significantly increased by 48%, which is consistent with an increase in the maximal glucose transport rate, Tmax, by 58% compared with the sham-treated animals. The localized 13C NMR measurements of brain glucose were directly validated by comparison with biochemically determined brain glucose content after rapid focused microwave fixation (1.4 s at 4 kW). Both in vivo MRS and biochemical measurements implied that brain glycogen content was not affected by chronic hypoglycaemia, consistent with brain glucose being a major factor controlling brain glycogen content. We conclude that the increased glucose transporter expression in chronic hypoglycaemia leads to increased brain glucose content at a given level of glycaemia. Such increased brain glucose concentrations can result in a lowered glycaemic threshold of counter-regulation observed in chronic hypoglycaemia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the preceding article, we demonstrated that activation of the hepatoportal glucose sensor led to a paradoxical development of hypoglycemia that was associated with increased glucose utilization by a subset of tissues. In this study, we tested whether GLUT2 plays a role in the portal glucose-sensing system that is similar to its involvement in pancreatic beta-cells. Awake RIPGLUT1 x GLUT2-/- and control mice were infused with glucose through the portal (Po-) or the femoral (Fe-) vein for 3 h at a rate equivalent to the endogenous glucose production rate. Blood glucose and plasma insulin concentrations were continuously monitored. Glucose turnover, glycolysis, and glycogen synthesis rates were determined by the 3H-glucose infusion technique. We showed that portal glucose infusion in RIPGLUT1 x GLUT24-/- mice did not induce the hypoglycemia observed in control mice but, in contrast, led to a transient hyperglycemic state followed by a return to normoglycemia; this glycemic pattern was similar to that observed in control Fe-mice and RIPGLUT1 x GLUT2-/- Fe-mice. Plasma insulin profiles during the infusion period were similar in control and RIPGLUT1 x GLUT2-/- Po- and Fe-mice. The lack of hypoglycemia development in RIPGLUT1 x GLUT2-/- mice was not due to the absence of GLUT2 in the liver. Indeed, reexpression by transgenesis of this transporter in hepatocytes did not restore the development of hypoglycemia after initiating portal vein glucose infusion. In the absence of GLUT2, glucose turnover increased in Po-mice to the same extent as that in RIPGLUT1 x GLUT2-/- or control Fe-mice. Finally, co-infusion of somatostatin with glucose prevented development of hypoglycemia in control Po-mice, but it did not affect the glycemia or insulinemia of RIPGLUT1 x GLUT2-/- Po-mice. Together, our data demonstrate that GLUT2 is required for the function of the hepatoportal glucose sensor and that somatostatin could inhibit the glucose signal by interfering with GLUT2-expressing sensing units.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Specialized glucosensing neurons are present in the hypothalamus, some of which neighbor the median eminence, where the blood-brain barrier has been reported leaky. A leaky blood-brain barrier implies high tissue glucose levels and obviates a role for endothelial glucose transporters in the control of hypothalamic glucose concentration, important in understanding the mechanisms of glucose sensing We therefore addressed the question of blood-brain barrier integrity at the hypothalamus for glucose transport by examining the brain tissue-to-plasma glucose ratio in the hypothalamus relative to other brain regions. We also examined glycogenolysis in hypothalamus because its occurrence is unlikely in the potential absence of a hypothalamus-blood interface. Across all regions the concentration of glucose was comparable at a given plasma glucose concentration and was a near linear function of plasma glucose. At steady-state, hypothalamic glucose concentration was similar to the extracellular hypothalamic glucose concentration reported by others. Hypothalamic glycogen fell at a rate of approximately 1.5 micromol/g/h and remained present in substantial amounts. We conclude for the hypothalamus, a putative primary site of brain glucose sensing that: the rate-limiting step for glucose transport into brain cells is at the blood-hypothalamus interface, and that glycogenolysis is consistent with a substantial blood -to- intracellular glucose concentration gradient.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intestinal glucose absorption is mediated by SGLT1 whereas GLUT2 is considered to provide basolateral exit. Recently, it was proposed that GLUT2 can be recruited into the apical membrane after a high luminal glucose bolus allowing bulk absorption of glucose by facilitated diffusion. Moreover, SGLT1 and GLUT2 are suggested to play an important role in intestinal glucose sensing and incretin secretion. In mice that lack either SGLT1 or GLUT2 we re-assessed the role of these transporters in intestinal glucose uptake after radiotracer glucose gavage and performed Western blot analysis for transporter abundance in apical membrane fractions in a comparative approach. Moreover, we examined the contribution of these transporters to glucose-induced changes in plasma GIP, GLP-1 and insulin levels. In mice lacking SGLT1, tissue retention of tracer glucose was drastically reduced throughout the entire small intestine whereas GLUT2-deficient animals exhibited higher tracer contents in tissue samples than wild type animals. Deletion of SGLT1 resulted also in reduced blood glucose elevations and abolished GIP and GLP-1 secretion in response to glucose. In mice lacking GLUT2, glucose-induced insulin but not incretin secretion was impaired. Western blot analysis revealed unchanged protein levels of SGLT1 after glucose gavage. GLUT2 detected in apical membrane fractions mainly resulted from contamination with basolateral membranes but did not change in density after glucose administration. SGLT1 is unequivocally the prime intestinal glucose transporter even at high luminal glucose concentrations. Moreover, SGLT1 mediates glucose-induced incretin secretion. Our studies do not provide evidence for GLUT2 playing any role in either apical glucose influx or incretin secretion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During the last 2 years, several novel genes that encode glucose transporter-like proteins have been identified and characterized. Because of their sequence similarity with GLUT1, these genes appear to belong to the family of solute carriers 2A (SLC2A, protein symbol GLUT). Sequence comparisons of all 13 family members allow the definition of characteristic sugar/polyol transporter signatures: (1) the presence of 12 membrane-spanning helices, (2) seven conserved glycine residues in the helices, (3) several basic and acidic residues at the intracellular surface of the proteins, (4) two conserved tryptophan residues, and (5) two conserved tyrosine residues. On the basis of sequence similarities and characteristic elements, the extended GLUT family can be divided into three subfamilies, namely class I (the previously known glucose transporters GLUT1-4), class II (the previously known fructose transporter GLUT5, the GLUT7, GLUT9 and GLUT11), and class III (GLUT6, 8, 10, 12, and the myo-inositol transporter HMIT1). Functional characteristics have been reported for some of the novel GLUTs. Like GLUT1-4, they exhibit a tissue/cell-specific expression (GLUT6, leukocytes, brain; GLUT8, testis, blastocysts, brain, muscle, adipocytes; GLUT9, liver, kidney; GLUT10, liver, pancreas; GLUT11, heart, skeletal muscle). GLUT6 and GLUT8 appear to be regulated by sub-cellular redistribution, because they are targeted to intra-cellular compartments by dileucine motifs in a dynamin dependent manner. Sugar transport has been reported for GLUT6, 8, and 11; HMIT1 has been shown to be a H+/myo-inositol co-transporter. Thus, the members of the extended GLUT family exhibit a surprisingly diverse substrate specificity, and the definition of sequence elements determining this substrate specificity will require a full functional characterization of all members.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

GLUT2-/- mice reexpressing GLUT1 or GLUT2 in their beta-cells (RIPGLUT1 x GLUT2-/- or RIPGLUT2 x GLUT2-/- mice) have nearly normal glucose-stimulated insulin secretion but show high glucagonemia in the fed state. Because this suggested impaired control of glucagon secretion, we set out to directly evaluate the control of glucagonemia by variations in blood glucose concentrations. Using fasted RIPGLUT1 x GLUT2-/- mice, we showed that glucagonemia was no longer increased by hypoglycemic (2.5 mmol/l glucose) clamps or suppressed by hyperglycemic (10 and 20 mmol/l glucose) clamps. However, an increase in plasma glucagon levels was detected when glycemia was decreased to < or =1 mmol/l, indicating preserved glucagon secretory ability, but of reduced sensitivity to glucopenia. To evaluate whether the high-fed glucagonemia could be due to an abnormally increased tone of the autonomic nervous system, fed mutant mice were injected with the ganglionic blockers hexamethonium and chlorisondamine. Both drugs lead to a rapid return of glucagonemia to the levels found in control fed mice. We conclude that 1) in the absence of GLUT2, there is an impaired control of glucagon secretion by low or high glucose; 2) this impaired glucagon secretory activity cannot be due to absence of GLUT2 from alpha-cells because these cells do not normally express this transporter; 3) this dysregulation may be due to inactivation of GLUT2-dependent glucose sensors located outside the endocrine pancreas and controlling glucagon secretion; and 4) because fed hyperglucagonemia is rapidly reversed by ganglionic blockers, this suggests that in the absence of GLUT2, there is an increased activity of the autonomic nervous system stimulating glucagon secretion during the fed state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Either 200 or 400 syngeneic islets were transplanted under the kidney capsule of normal or streptozocin-induced diabetic B6/AF1 mice. The diabetic mice with 400 islets became normoglycemic, but those with 200 islets, an insufficient number, were still diabetic after the transplantation (Tx). Two weeks after Tx, GLUT2 expression in the islet grafts was evaluated by immunofluorescence and Western blots, and graft function was examined by perfusion of the graft-bearing kidney. Immunofluorescence for GLUT2 was dramatically reduced in the beta-cells of grafts with 200 islets exposed to hyperglycemia. However, it was plentiful in grafts with 400 islets in a normoglycemic environment. Densitometric analysis of Western blots on graft homogenates demonstrated that GLUT2 protein levels in the islets, when exposed to chronic hyperglycemia for 2 weeks, were decreased to 16% of those of normal recipients. Moreover, these grafts had defective glucose-induced insulin secretion, while the effects of arginine were preserved. We conclude that GLUT2 expression in normal beta-cells is promptly down-regulated during exposure to hyperglycemia and may contribute to the loss of glucose-induced secretion of diabetes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The brain requires a constant and substantial energy supply to maintain its main functions. For decades, it was assumed that glucose was the major if not the only significant source of energy for neurons. This view was supported by the expression of specific facilitative glucose transporters on cerebral blood vessels, as well as neurons. Despite the fact that glucose remains a key energetic substrate for the brain, growing evidence suggests a different scenario. Thus astrocytes, a major type of glial cells that express their own glucose transporter, play a critical role in coupling synaptic activity with glucose utilization. It was shown that glutamatergic activity triggers an enhancement of aerobic glycolysis in this cell type. As a result, lactate is provided to neurons as an additional energy substrate. Indeed, lactate has proven to be a preferential energy substrate for neurons under various conditions. A family of proton-linked carriers known as monocarboxylate transporters has been described and specific members have been found to be expressed by endothelial cells, astrocytes and neurons. Moreover, these transporters are subject to fine regulation of their expression levels and localization, notably in neurons, which suggests that lactate supply could be adjusted as a function of their level of activity. Considering the importance of energetics in the aetiology of several neurodegenerative diseases, a better understanding of its cellular and molecular underpinnings might have important implications for the future development of neuroprotective strategies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The urate transporter, GLUT9, is responsible for the basolateral transport of urate in the proximal tubule of human kidneys and in the placenta, playing a central role in uric acid homeostasis. GLUT9 shares the least homology with other members of the glucose transporter family, especially with the glucose transporting members GLUT1-4 and is the only member of the GLUT family to transport urate. The recently published high-resolution structure of XylE, a bacterial D-xylose transporting homologue, yields new insights into the structural foundation of this GLUT family of proteins. While this represents a huge milestone, it is unclear if human GLUT9 can benefit from this advancement through subsequent structural based targeting and mutagenesis. Little progress has been made toward understanding the mechanism of GLUT9 since its discovery in 2000. Before work can begin on resolving the mechanisms of urate transport we must determine methods to express, purify and analyze hGLUT9 using a model system adept in expressing human membrane proteins. Here, we describe the surface expression, purification and isolation of monomeric protein, and functional analysis of recombinant hGLUT9 using the Xenopus laevis oocyte system. In addition, we generated a new homology-based high-resolution model of hGLUT9 from the XylE crystal structure and utilized our purified protein to generate a low-resolution single particle reconstruction. Interestingly, we demonstrate that the functional protein extracted from the Xenopus system fits well with the homology-based model allowing us to generate the predicted urate-binding pocket and pave a path for subsequent mutagenesis and structure-function studies.