33 resultados para Global change


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Invasive species are an excellent opportunity to think about the nature society desires, particularly in the face of global changes. Nature and human views of nature are rapidly evolving; our approach to bio- logical invasions through biosecurity institutions and land management policies must evolve in tandem with these changes. We review three dimensions that are insufficiently addressed. First, biological inva- sions are culturally shaped and interpreted. Humans play a major role in the movement and nurturing of alien life, and esthetics, perception, and emotion are deeply implicated in the management of invasive species. What people fear or regret with invasive species are not their effects on nature per se, but their effects on a particular desired nature, and policymaking must reflect this. Second, biological invasions are not restricted to negative impacts. Invasions take place in landscapes where many natural condi- tions have been altered, so policy tools must recognize that invasive species are a functional, structural, and compositional part of transformed ecosystems. In some cases, native species benefit from changes in resource availability caused by invasions or from protections provided by an invasive plant. Finally, invasive species can help ecosystems and people to adapt to global change by maintaining ecosystem processes such as productivity, carbon storage, and nutrient cycling in a context of climate change or land cover transformations. While recognition is growing among ecologists that novel, invaded ecosystems have value, and while the on-the-ground application of biosecurity policies has of necessity adjusted to local contexts and other agendas, invasion biology could aid policymaking by better addressing the three complexities inherent in the three dimensions highlighted above.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: Modelling species at the assemblage level is required to make effective forecast of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (MEM), or by stacking of individual species distribution models (S-SDMs). To obtain more realistic predictions of species assemblages, the SESAM framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. Location: The western Swiss Alps. Methods: Two implementations of the SESAM framework were tested: a "Probability ranking" rule based on species richness predictions and rough probabilities from SDMs, and a "Trait range" rule that uses the predicted upper and lower bound of community-level distribution of three different functional traits (vegetative height, specific leaf area and seed mass) to constraint a pool of environmentally filtered species from binary SDMs predictions. Results: We showed that all independent constraints expectedly contributed to reduce species richness overprediction. Only the "Probability ranking" rule allowed slightly but significantly improving predictions of community composition. Main conclusion: We tested various ways to implement the SESAM framework by integrating macroecological constraints into S-SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further improving the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints.