246 resultados para Geostatistical models
Resumo:
Species distribution models (SDMs) are widely used to explain and predict species ranges and environmental niches. They are most commonly constructed by inferring species' occurrence-environment relationships using statistical and machine-learning methods. The variety of methods that can be used to construct SDMs (e.g. generalized linear/additive models, tree-based models, maximum entropy, etc.), and the variety of ways that such models can be implemented, permits substantial flexibility in SDM complexity. Building models with an appropriate amount of complexity for the study objectives is critical for robust inference. We characterize complexity as the shape of the inferred occurrence-environment relationships and the number of parameters used to describe them, and search for insights into whether additional complexity is informative or superfluous. By building 'under fit' models, having insufficient flexibility to describe observed occurrence-environment relationships, we risk misunderstanding the factors shaping species distributions. By building 'over fit' models, with excessive flexibility, we risk inadvertently ascribing pattern to noise or building opaque models. However, model selection can be challenging, especially when comparing models constructed under different modeling approaches. Here we argue for a more pragmatic approach: researchers should constrain the complexity of their models based on study objective, attributes of the data, and an understanding of how these interact with the underlying biological processes. We discuss guidelines for balancing under fitting with over fitting and consequently how complexity affects decisions made during model building. Although some generalities are possible, our discussion reflects differences in opinions that favor simpler versus more complex models. We conclude that combining insights from both simple and complex SDM building approaches best advances our knowledge of current and future species ranges.
Resumo:
A better understanding of the factors that mould ecological community structure is required to accurately predict community composition and to anticipate threats to ecosystems due to global changes. We tested how well stacked climate-based species distribution models (S-SDMs) could predict butterfly communities in a mountain region. It has been suggested that climate is the main force driving butterfly distribution and community structure in mountain environments, and that, as a consequence, climate-based S-SDMs should yield unbiased predictions. In contrast to this expectation, at lower altitudes, climate-based S-SDMs overpredicted butterfly species richness at sites with low plant species richness and underpredicted species richness at sites with high plant species richness. According to two indices of composition accuracy, the Sorensen index and a matching coefficient considering both absences and presences, S-SDMs were more accurate in plant-rich grasslands. Butterflies display strong and often specialised trophic interactions with plants. At lower altitudes, where land use is more intense, considering climate alone without accounting for land use influences on grassland plant richness leads to erroneous predictions of butterfly presences and absences. In contrast, at higher altitudes, where climate is the main force filtering communities, there were fewer differences between observed and predicted butterfly richness. At high altitudes, even if stochastic processes decrease the accuracy of predictions of presence, climate-based S-SDMs are able to better filter out butterfly species that are unable to cope with severe climatic conditions, providing more accurate predictions of absences. Our results suggest that predictions should account for plants in disturbed habitats at lower altitudes but that stochastic processes and heterogeneity at high altitudes may limit prediction success of climate-based S-SDMs.
Resumo:
BACKGROUND: In vitro aggregating brain cell cultures containing all types of brain cells have been shown to be useful for neurotoxicological investigations. The cultures are used for the detection of nervous system-specific effects of compounds by measuring multiple endpoints, including changes in enzyme activities. Concentration-dependent neurotoxicity is determined at several time points. METHODS: A Markov model was set up to describe the dynamics of brain cell populations exposed to potentially neurotoxic compounds. Brain cells were assumed to be either in a healthy or stressed state, with only stressed cells being susceptible to cell death. Cells may have switched between these states or died with concentration-dependent transition rates. Since cell numbers were not directly measurable, intracellular lactate dehydrogenase (LDH) activity was used as a surrogate. Assuming that changes in cell numbers are proportional to changes in intracellular LDH activity, stochastic enzyme activity models were derived. Maximum likelihood and least squares regression techniques were applied for estimation of the transition rates. Likelihood ratio tests were performed to test hypotheses about the transition rates. Simulation studies were used to investigate the performance of the transition rate estimators and to analyze the error rates of the likelihood ratio tests. The stochastic time-concentration activity model was applied to intracellular LDH activity measurements after 7 and 14 days of continuous exposure to propofol. The model describes transitions from healthy to stressed cells and from stressed cells to death. RESULTS: The model predicted that propofol would affect stressed cells more than healthy cells. Increasing propofol concentration from 10 to 100 μM reduced the mean waiting time for transition to the stressed state by 50%, from 14 to 7 days, whereas the mean duration to cellular death reduced more dramatically from 2.7 days to 6.5 hours. CONCLUSION: The proposed stochastic modeling approach can be used to discriminate between different biological hypotheses regarding the effect of a compound on the transition rates. The effects of different compounds on the transition rate estimates can be quantitatively compared. Data can be extrapolated at late measurement time points to investigate whether costs and time-consuming long-term experiments could possibly be eliminated.
Resumo:
Aspergillus lentulus, an Aspergillus fumigatus sibling species, is increasingly reported in corticosteroid-treated patients. Its clinical significance is unknown, but the fact that A. lentulus shows reduced antifungal susceptibility, mainly to voriconazole, is of serious concern. Heterologous expression of cyp51A from A. fumigatus and A. lentulus was performed in Saccharomyces cerevisiae to assess differences in the interaction of Cyp51A with the azole drugs. The absence of endogenous ERG11 was efficiently complemented in S. cerevisiae by the expression of either Aspergillus cyp51A allele. There was a marked difference between azole minimum inhibitory concentration (MIC) values of the clones expressing each Aspergillus spp. cyp51A. Saccharomyces cerevisiae clones expressing A. lentulus alleles showed higher MICs to all of the azoles tested, supporting the hypothesis that the intrinsic azole resistance of A. lentulus could be associated with Cyp51A. Homology models of A. fumigatus and A. lentulus Cyp51A protein based on the crystal structure of Cyp51p from Mycobacterium tuberculosis in complex with fluconazole were almost identical owing to their mutual high sequence identity. Molecular dynamics (MD) was applied to both three-dimensional protein models to refine the homology modelling and to explore possible differences in the Cyp51A-voriconazole interaction. After 20ns of MD modelling, some critical differences were observed in the putative closed form adopted by the protein upon voriconazole binding. A closer study of the A. fumigatus and A. lentulus voriconazole putative binding site in Cyp51A suggested that some major differences in the protein's BC loop could differentially affect the lock-up of voriconazole, which in turn could correlate with their different azole susceptibility profiles.
Resumo:
The investigation of unexplained syncope remains a challenging clinical problem. In the present study we sought to evaluate the diagnostic value of a standardized work-up focusing on non invasive tests in patients with unexplained syncope referred to a syncope clinic, and whether certain combinations of clinical parameters are characteristic of rhythmic and reflex causes of syncope. METHODS AND RESULTS: 317 consecutive patients underwent a standardized work-up including a 12-lead ECG, physical examination, detailed history with screening for syncope-related symptoms using a structured questionnaire followed by carotid sinus massage (CSM), and head-up tilt test. Invasive testings including an electrophysiological study and implantation of a loop recorder were only performed in those with structural heart disease or traumatic syncope. Our work-up identified an etiology in 81% of the patients. Importantly, three quarters of the causes were established non invasively combining head-up tilt test, CSM and hyperventilation testing. Invasive tests yielded an additional 7% of diagnoses. Logistic analysis identified age and number of significant prodromes as the only predictive factors of rhythmic syncope. The same two factors, in addition to the duration of the ECG P-wave, were also predictive of vasovagal and psychogenic syncope. These factors, optimally combined in predictive models, showed a high negative and a modest positive predictive value. CONCLUSION: A standardized work-up focusing on non invasive tests allows to establish more than three quarters of syncope causes. Predictive models based on simple clinical parameters may help to distinguish between rhythmic and other causes of syncope
Resumo:
The paper presents an approach for mapping of precipitation data. The main goal is to perform spatial predictions and simulations of precipitation fields using geostatistical methods (ordinary kriging, kriging with external drift) as well as machine learning algorithms (neural networks). More practically, the objective is to reproduce simultaneously both the spatial patterns and the extreme values. This objective is best reached by models integrating geostatistics and machine learning algorithms. To demonstrate how such models work, two case studies have been considered: first, a 2-day accumulation of heavy precipitation and second, a 6-day accumulation of extreme orographic precipitation. The first example is used to compare the performance of two optimization algorithms (conjugate gradients and Levenberg-Marquardt) of a neural network for the reproduction of extreme values. Hybrid models, which combine geostatistical and machine learning algorithms, are also treated in this context. The second dataset is used to analyze the contribution of radar Doppler imagery when used as external drift or as input in the models (kriging with external drift and neural networks). Model assessment is carried out by comparing independent validation errors as well as analyzing data patterns.
Resumo:
The lymphatic vascular system, the body's second vascular system present in vertebrates, has emerged in recent years as a crucial player in normal and pathological processes. It participates in the maintenance of normal tissue fluid balance, the immune functions of cellular and antigen trafficking and absorption of fatty acids and lipid-soluble vitamins in the gut. Recent scientific discoveries have highlighted the role of lymphatic system in a number of pathologic conditions, including lymphedema, inflammatory diseases, and tumor metastasis. Development of genetically modified animal models, identification of lymphatic endothelial specific markers and regulators coupled with technological advances such as high-resolution imaging and genome-wide approaches have been instrumental in understanding the major steps controlling growth and remodeling of lymphatic vessels. This review highlights the recent insights and developments in the field of lymphatic vascular biology.
Resumo:
Models predicting species spatial distribution are increasingly applied to wildlife management issues, emphasising the need for reliable methods to evaluate the accuracy of their predictions. As many available datasets (e.g. museums, herbariums, atlas) do not provide reliable information about species absences, several presence-only based analyses have been developed. However, methods to evaluate the accuracy of their predictions are few and have never been validated. The aim of this paper is to compare existing and new presenceonly evaluators to usual presence/absence measures. We use a reliable, diverse, presence/absence dataset of 114 plant species to test how common presence/absence indices (Kappa, MaxKappa, AUC, adjusted D-2) compare to presenceonly measures (AVI, CVI, Boyce index) for evaluating generalised linear models (GLM). Moreover we propose a new, threshold-independent evaluator, which we call "continuous Boyce index". All indices were implemented in the B10MAPPER software. We show that the presence-only evaluators are fairly correlated (p > 0.7) to the presence/absence ones. The Boyce indices are closer to AUC than to MaxKappa and are fairly insensitive to species prevalence. In addition, the Boyce indices provide predicted-toexpected ratio curves that offer further insights into the model quality: robustness, habitat suitability resolution and deviation from randomness. This information helps reclassifying predicted maps into meaningful habitat suitability classes. The continuous Boyce index is thus both a complement to usual evaluation of presence/absence models and a reliable measure of presence-only based predictions.
Resumo:
Des progrès significatifs ont été réalisés dans le domaine de l'intégration quantitative des données géophysique et hydrologique l'échelle locale. Cependant, l'extension à de plus grandes échelles des approches correspondantes constitue encore un défi majeur. Il est néanmoins extrêmement important de relever ce défi pour développer des modèles fiables de flux des eaux souterraines et de transport de contaminant. Pour résoudre ce problème, j'ai développé une technique d'intégration des données hydrogéophysiques basée sur une procédure bayésienne de simulation séquentielle en deux étapes. Cette procédure vise des problèmes à plus grande échelle. L'objectif est de simuler la distribution d'un paramètre hydraulique cible à partir, d'une part, de mesures d'un paramètre géophysique pertinent qui couvrent l'espace de manière exhaustive, mais avec une faible résolution (spatiale) et, d'autre part, de mesures locales de très haute résolution des mêmes paramètres géophysique et hydraulique. Pour cela, mon algorithme lie dans un premier temps les données géophysiques de faible et de haute résolution à travers une procédure de réduction déchelle. Les données géophysiques régionales réduites sont ensuite reliées au champ du paramètre hydraulique à haute résolution. J'illustre d'abord l'application de cette nouvelle approche dintégration des données à une base de données synthétiques réaliste. Celle-ci est constituée de mesures de conductivité hydraulique et électrique de haute résolution réalisées dans les mêmes forages ainsi que destimations des conductivités électriques obtenues à partir de mesures de tomographic de résistivité électrique (ERT) sur l'ensemble de l'espace. Ces dernières mesures ont une faible résolution spatiale. La viabilité globale de cette méthode est testée en effectuant les simulations de flux et de transport au travers du modèle original du champ de conductivité hydraulique ainsi que du modèle simulé. Les simulations sont alors comparées. Les résultats obtenus indiquent que la procédure dintégration des données proposée permet d'obtenir des estimations de la conductivité en adéquation avec la structure à grande échelle ainsi que des predictions fiables des caractéristiques de transports sur des distances de moyenne à grande échelle. Les résultats correspondant au scénario de terrain indiquent que l'approche d'intégration des données nouvellement mise au point est capable d'appréhender correctement les hétérogénéitées à petite échelle aussi bien que les tendances à gande échelle du champ hydraulique prévalent. Les résultats montrent également une flexibilté remarquable et une robustesse de cette nouvelle approche dintégration des données. De ce fait, elle est susceptible d'être appliquée à un large éventail de données géophysiques et hydrologiques, à toutes les gammes déchelles. Dans la deuxième partie de ma thèse, j'évalue en détail la viabilité du réechantillonnage geostatique séquentiel comme mécanisme de proposition pour les méthodes Markov Chain Monte Carlo (MCMC) appliquées à des probmes inverses géophysiques et hydrologiques de grande dimension . L'objectif est de permettre une quantification plus précise et plus réaliste des incertitudes associées aux modèles obtenus. En considérant une série dexemples de tomographic radar puits à puits, j'étudie deux classes de stratégies de rééchantillonnage spatial en considérant leur habilité à générer efficacement et précisément des réalisations de la distribution postérieure bayésienne. Les résultats obtenus montrent que, malgré sa popularité, le réechantillonnage séquentiel est plutôt inefficace à générer des échantillons postérieurs indépendants pour des études de cas synthétiques réalistes, notamment pour le cas assez communs et importants où il existe de fortes corrélations spatiales entre le modèle et les paramètres. Pour résoudre ce problème, j'ai développé un nouvelle approche de perturbation basée sur une déformation progressive. Cette approche est flexible en ce qui concerne le nombre de paramètres du modèle et lintensité de la perturbation. Par rapport au rééchantillonage séquentiel, cette nouvelle approche s'avère être très efficace pour diminuer le nombre requis d'itérations pour générer des échantillons indépendants à partir de la distribution postérieure bayésienne. - Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending corresponding approaches beyond the local scale still represents a major challenge, yet is critically important for the development of reliable groundwater flow and contaminant transport models. To address this issue, I have developed a hydrogeophysical data integration technique based on a two-step Bayesian sequential simulation procedure that is specifically targeted towards larger-scale problems. The objective is to simulate the distribution of a target hydraulic parameter based on spatially exhaustive, but poorly resolved, measurements of a pertinent geophysical parameter and locally highly resolved, but spatially sparse, measurements of the considered geophysical and hydraulic parameters. To this end, my algorithm links the low- and high-resolution geophysical data via a downscaling procedure before relating the downscaled regional-scale geophysical data to the high-resolution hydraulic parameter field. I first illustrate the application of this novel data integration approach to a realistic synthetic database consisting of collocated high-resolution borehole measurements of the hydraulic and electrical conductivities and spatially exhaustive, low-resolution electrical conductivity estimates obtained from electrical resistivity tomography (ERT). The overall viability of this method is tested and verified by performing and comparing flow and transport simulations through the original and simulated hydraulic conductivity fields. The corresponding results indicate that the proposed data integration procedure does indeed allow for obtaining faithful estimates of the larger-scale hydraulic conductivity structure and reliable predictions of the transport characteristics over medium- to regional-scale distances. The approach is then applied to a corresponding field scenario consisting of collocated high- resolution measurements of the electrical conductivity, as measured using a cone penetrometer testing (CPT) system, and the hydraulic conductivity, as estimated from electromagnetic flowmeter and slug test measurements, in combination with spatially exhaustive low-resolution electrical conductivity estimates obtained from surface-based electrical resistivity tomography (ERT). The corresponding results indicate that the newly developed data integration approach is indeed capable of adequately capturing both the small-scale heterogeneity as well as the larger-scale trend of the prevailing hydraulic conductivity field. The results also indicate that this novel data integration approach is remarkably flexible and robust and hence can be expected to be applicable to a wide range of geophysical and hydrological data at all scale ranges. In the second part of my thesis, I evaluate in detail the viability of sequential geostatistical resampling as a proposal mechanism for Markov Chain Monte Carlo (MCMC) methods applied to high-dimensional geophysical and hydrological inverse problems in order to allow for a more accurate and realistic quantification of the uncertainty associated with the thus inferred models. Focusing on a series of pertinent crosshole georadar tomographic examples, I investigated two classes of geostatistical resampling strategies with regard to their ability to efficiently and accurately generate independent realizations from the Bayesian posterior distribution. The corresponding results indicate that, despite its popularity, sequential resampling is rather inefficient at drawing independent posterior samples for realistic synthetic case studies, notably for the practically common and important scenario of pronounced spatial correlation between model parameters. To address this issue, I have developed a new gradual-deformation-based perturbation approach, which is flexible with regard to the number of model parameters as well as the perturbation strength. Compared to sequential resampling, this newly proposed approach was proven to be highly effective in decreasing the number of iterations required for drawing independent samples from the Bayesian posterior distribution.
Resumo:
Predictive species distribution modelling (SDM) has become an essential tool in biodiversity conservation and management. The choice of grain size (resolution) of environmental layers used in modelling is one important factor that may affect predictions. We applied 10 distinct modelling techniques to presence-only data for 50 species in five different regions, to test whether: (1) a 10-fold coarsening of resolution affects predictive performance of SDMs, and (2) any observed effects are dependent on the type of region, modelling technique, or species considered. Results show that a 10 times change in grain size does not severely affect predictions from species distribution models. The overall trend is towards degradation of model performance, but improvement can also be observed. Changing grain size does not equally affect models across regions, techniques, and species types. The strongest effect is on regions and species types, with tree species in the data sets (regions) with highest locational accuracy being most affected. Changing grain size had little influence on the ranking of techniques: boosted regression trees remain best at both resolutions. The number of occurrences used for model training had an important effect, with larger sample sizes resulting in better models, which tended to be more sensitive to grain. Effect of grain change was only noticeable for models reaching sufficient performance and/or with initial data that have an intrinsic error smaller than the coarser grain size.
Resumo:
Résumé Introduction: La perfusion isolée cytostatique du poumon est une technique attractive qui permet l'administration des doses élevées d'un agent cytostatique tout en épargnant dans la mesure du possible la circulation systémique. Cependant, la perfusion de l'artère pulmonaire risque d'épargner le territoire pulmonaire vascularisé par l'intermédiaire des artères bronchiques, ce qui pourrait diminuer l'efficacité de ce traitement au cas où la lésion ciblée est vascularisée par les artères bronchiques. Ce travail est destiné au développement d'un modèle tumoral au niveau des poumons de rongeur (rat) porteur d'un sarcome pulmonaire afin de déterminer si la voie d'injection des cellules tumorales (intraveineuse, versus intratumorale) influencera la vascularisation des tumeurs (provenant du système artères pulmonaires ou artères bronchiques). Méthod: Des tumeurs de sarcomes pulmonaires ont été générées par injection d'une suspension cellulaire de sarcome, soit par injection intraveineuse, soit directement dans le parenchyme pulmonaire par thoracotomie. Ensuite, une perfusion isolée du poumon porteur de la tumeur à l'aide de l'encre a été effectuée, soit par l'artère pulmonaire, soit par le système des artères bronchiques. La distribution de l'encre dans les vaisseaux tumoraux ainsi que dans les vaisseaux non tumoraux du poumon adjacent a été investiguée à l'aide d'une analyse histologique des poumons perfusés. Résultat: L'administration intraveineuse et intratumorale de la suspension de cellules tumorales résulte en des tumeurs similaires sur le plan histologique. Néanmoins, l'injection intra-parenchymateuse démontre des tumeurs plus homogènes et avec un développement plus prédictible, était associée à une survie plus longue qu'après injection intraveineuse. Les analyses histologiques après perfusion isolée à l'aide de l'encre démontre que les tumeurs résultant de l'injection intraveineuse ont développé une vascularisation se basant sur le système d'artères pulmonaires tandis que les tumeurs émergeant après injection intraparenchymateuse ont développé une vascularisation provenant du système des artères bronchiques. Conclusion: Ce travail démontre pour la première fois l'importance du mode de génération de tumeurs pulmonaires en ce qui concerne leur future vascularisation, ce qui pourrait avoir un impact sur leur traitement par perfusion isolée du poumon. Abstract Isolated cytostatic lung perfusion (ILP) is an attractive technique allowing delivery of a high-dose of cytostatic agents to the lungs while limiting systemic toxicity. In developing a rat model of ILP, we have analysed the effect of the route of tumour cell injection on the source of tumour vessels. Pulmonary sarcomas were estab¬lished by injecting a sarcoma cell suspension either by the intravenous (i.v.) route or directly into the lung paren¬chyma. Ink perfusion through either pulmonary artery (PA) or bronchial arteries (BA) was performed and the characteristics of the tumour deposits defined. i.v. and direct injection methods induced pulmonary sarcoma nodules, with similar histological features. The intraparenchymal injection of tumour cells resulted in more reli¬able and reproducible tumour growth and was associat¬ed with a longer survival of the animals. i.v. injected tumours developed a PA-derived vascular tree whereas directly injected tumours developed a BA-derived vasculature.