328 resultados para Genes, Developmental
Resumo:
Innate immune responses play a central role in neuroprotection and neurotoxicity during inflammatory processes that are triggered by pathogen-associated molecular pattern-exhibiting agents such as bacterial lipopolysaccharide (LPS) and that are modulated by inflammatory cytokines such as interferon γ (IFNγ). Recent findings describing the unexpected complexity of mammalian genomes and transcriptomes have stimulated further identification of novel transcripts involved in specific physiological and pathological processes, such as the neural innate immune response that alters the expression of many genes. We developed a system for efficient subtractive cloning that employs both sense and antisense cRNA drivers, and coupled it with in-house cDNA microarray analysis. This system enabled effective direct cloning of differentially expressed transcripts, from a small amount (0.5 µg) of total RNA. We applied this system to isolation of genes activated by LPS and IFNγ in primary-cultured cortical cells that were derived from newborn mice, to investigate the mechanisms involved in neuroprotection and neurotoxicity in maternal/perinatal infections that cause various brain injuries including periventricular leukomalacia. A number of genes involved in the immune and inflammatory response were identified, showing that neonatal neuronal/glial cells are highly responsive to LPS and IFNγ. Subsequent RNA blot analysis revealed that the identified genes were activated by LPS and IFNγ in a cooperative or distinctive manner, thereby supporting the notion that these bacterial and cellular inflammatory mediators can affect the brain through direct but complicated pathways. We also identified several novel clones of apparently non-coding RNAs that potentially harbor various regulatory functions. Characterization of the presently identified genes will give insights into mechanisms and interventions not only for perinatal infection-induced brain damage, but also for many other innate immunity-related brain disorders.
Resumo:
The timing and quality of both sleep and wakefulness are thought to be regulated by the interaction of two processes. One of these two processes keeps track of the prior sleep-wake history and controls the homeostatic need for sleep while the other sets the time-of-day that sleep preferably occurs. The molecular pathways underlying the latter, circadian process have been studied in detail and their key role in physiological time-keeping has been well established. Analyses of sleep in mice and flies lacking core circadian clock gene proteins have demonstrated, however, that besides disrupting circadian rhythms, also sleep homeostatic processes were affected. Subsequent studies revealed that sleep loss alters both the mRNA levels and the specific DNA-binding of the key circadian transcriptional regulators to their target sequences in the mouse brain. The fact that sleep loss impinges on the very core of the molecular circadian circuitry might explain why both inadequate sleep and disrupted circadian rhythms can similarly lead to metabolic pathology. The evidence for a role for clock genes in sleep homeostasis will be reviewed here.
Resumo:
Soil bacteria are heavily consumed by protozoan predators, and many bacteria have evolved defense strategies such as the production of toxic exometabolites. However, the production of toxins is energetically costly and therefore is likely to be adjusted according to the predation risk to balance the costs and benefits of predator defense. We investigated the response of the biocontrol bacterium Pseudomonas fluorescens CHA0 to a common predator, the free-living amoeba Acanthamoeba castellanii. We monitored the effect of the exposure to predator cues or direct contact with the predators on the expression of the phlA, prnA, hcnA, and pltA genes, which are involved in the synthesis of the toxins, 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin, hydrogen cyanide, and pyoluteorin, respectively. Predator chemical cues led to 2.2-, 2.0-, and 1.2-fold increases in prnA, phlA, and hcnA expression, respectively, and to a 25% increase in bacterial toxicity. The upregulation of the tested genes was related to the antiprotozoan toxicity of the corresponding toxins. Pyrrolnitrin and DAPG had the highest toxicity, suggesting that bacteria secrete a predator-specific toxin cocktail. The response of the bacteria was elicited by supernatants of amoeba cultures, indicating that water-soluble chemical compounds were responsible for induction of the bacterial defense response. In contrast, direct contact of bacteria with living amoebae reduced the expression of the four bacterial toxin genes by up to 50%, suggesting that protozoa can repress bacterial toxicity. The results indicate that predator-prey interactions are a determinant of toxin production by rhizosphere P. fluorescens and may have an impact on its biocontrol potential.
Resumo:
The crocidurine shrews include the most speciose genus of mammals, Crocidura. The origin and evolution of their radiation is, however, poorly understood because of very scant fossil records and a rather conservative external morphology between species. Here, we use an alignment of 3560 base pairs of mitochondrial and nuclear DNA to generate a phylogenetic hypothesis for the evolution of Old World shrews of the subfamily Crocidurinae. These molecular data confirm the monophyly of the speciose African and Eurasian Crocidura, which also includes the fossorial, monotypic genus Diplomesodon. The phylogenetic reconstructions give further credit to a paraphyletic position of Suncus shrews, which are placed into at least two independent clades (one in Africa and sister to Sylvisorex and one in Eurasia), at the base of the Crocidura radiation. Therefore, we recommend restricting the genus Suncus to the Palaearctic and Oriental taxa, and to consider all the African Suncus as Sylvisorex. Using molecular dating and biogeographic reconstruction analyses, we suggest a Palaearctic-Oriental origin for Crocidura dating back to the Upper Miocene (6.8 million years ago) and several subsequent colonisations of the Afrotropical region by independent lineages of Crocidura.
Resumo:
We report clinical, anthropometric and radiological findings in 4 siblings with a new type of skeletal dysplasia. 4 normally intelligent girls exhibit dwarfism between -3.4 and -4.6 standard deviations with accentuated shortening of the lower limbs, moderate deformity of the vertebral bodies, mildly striated metaphyses, saddle nose, frontal bossing, and relatively large head. The family pedigree suggests autosomal recessive inheritance. We propose the designation of SPONASTRIME dysplasia, derived from spondylar and nasal alterations with striation of the metaphyses.
Resumo:
BACKGROUND: Retinitis pigmentosa and other hereditary retinal degenerations (HRD) are rare genetic diseases leading to progressive blindness. Recessive HRD are caused by mutations in more than 100 different genes. Laws of population genetics predict that, on a purely theoretical ground, such a high number of genes should translate into an extremely elevated frequency of unaffected carriers of mutations. In this study we estimate the proportion of these individuals within the general population, via the analyses of data from whole-genome sequencing. METHODOLOGY/PRINCIPAL FINDINGS: We screened complete and high-quality genome sequences from 46 control individuals from various world populations for HRD mutations, using bioinformatic tools developed in-house. All mutations detected in silico were validated by Sanger sequencing. We identified clear-cut, null recessive HRD mutations in 10 out of the 46 unaffected individuals analyzed (∼22%). CONCLUSIONS/SIGNIFICANCE: Based on our data, approximately one in 4-5 individuals from the general population may be a carrier of null mutations that are responsible for HRD. This would be the highest mutation carrier frequency so far measured for a class of Mendelian disorders, especially considering that missenses and other forms of pathogenic changes were not included in our assessment. Among other things, our results indicate that the risk for a consanguineous couple of generating a child with a blinding disease is particularly high, compared to other genetic conditions.
Resumo:
The plant immune system relies to a great extent on the highly regulated expression of hundreds of defense genes encoding antimicrobial proteins, such as defensins, and antiherbivore proteins, such as lectins. The expression of many of these genes is controlled by a family of mediators known as jasmonates; these cyclic oxygenated fatty acid derivatives are reminiscent of prostaglandins. The roles of jasmonates also extend to the control of reproductive development. How are these complex events regulated? Nearly 20 members of the jasmonate family have been characterized. Some, like jasmonic acid, exist in unmodified forms, whereas others are conjugated to other lipids or to hydrophobic amino acids. Why do so many chemically different forms of these mediators exist, and do individual jasmonates have unique signaling properties or are they made to facilitate transport within and between cells? Key features of the jasmonate signal pathway have been identified and include the specific activation of E3-type ubiquitin ligases thought to target as-yet-undescribed transcriptional repressors for modification or destruction. Several classes of transcription factor are known to function in the jasmonate pathway, and, in some cases, these proteins provide nodes that integrate this network with other important defensive and developmental pathways. Progress in jasmonate research is now rapid, but large gaps in our knowledge exist. Aimed to keep pace with progress, the ensemble of jasmonate Connections Maps at the Signal Transduction Knowledge Environment describe (i) the canonical signaling pathway, (ii) the Arabidopsis signaling pathway, and (iii) the biogenesis and structures of the jasmonates themselves.
Resumo:
The class II transactivator (CIITA) has been referred to as the "master control factor" for the expression of MHC class II (MHCII) genes. As our knowledge on the specificity and function of CIITA grows, it is becoming increasingly evident that this sobriquet is entirely justified. First, despite extensive investigations, the major target genes of CIITA remain those implicated in the presentation of antigenic peptides by MHCII molecules. Although other putative target genes have been reported, the contribution of CIITA to their expression remains indirect, controversial or comparatively minor relative to its decisive role as a regulator of MHCII and related genes. Second, the most important parameter dictating MHCII expression is by far the expression pattern of the gene encoding CIITA (MHC2TA). The vast majority of signals that activate or repress MHCII expression under physiological and pathological situations converge on one or more of the three alternative promoters that drive transcription of the MHC2TA gene. In short, with respect to its specificity and its exquisitely controlled pattern of expression, CIITA is by a long stretch the single most important transcription factor for the regulation of genes required for MHCII-restricted antigen-presentation.
Resumo:
Converging evidence favors an abnormal susceptibility to oxidative stress in schizophrenia. Decreased levels of glutathione (GSH), the major cellular antioxidant and redox regulator, was observed in cerebrospinal-fluid and prefrontal cortex of patients. Importantly, abnormal GSH synthesis of genetic origin was observed: Two case-control studies showed an association with a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease associated genotypes (35% of patients) correlated with decreased GCLC protein, GCL activity and GSH content. Similar GSH system anomalies were observed in early psychosis patients. Such redox dysregulation combined with environmental stressors at specific developmental stages could underlie structural and functional connectivity anomalies. In pharmacological and knock-out (KO) models, GSH deficit induces anomalies analogous to those reported in patients. (a) morphology: spine density and GABA-parvalbumine immunoreactivity (PV-I) were decreased in anterior cingulate cortex. KO mice showed delayed cortical PV-I at PD10. This effect is exacerbated in mice with increased DA from PD5-10. KO mice exhibit cortical impairment in myelin and perineuronal net known to modulate PV connectivity. (b) physiology: In cultured neurons, NMDA response are depressed by D2 activation. In hippocampus, NMDA-dependent synaptic plasticity is impaired and kainate induced g-oscillations are reduced in parallel to PV-I. (c) cognition: low GSH models show increased sensitivity to stress, hyperactivity, abnormal object recognition, olfactory integration and social behavior. In a clinical study, GSH precursor N-acetyl cysteine (NAC) as add on therapy, improves the negative symptoms and decreases the side effects of antipsychotics. In an auditory oddball paradigm, NAC improves the mismatched negativity, an evoked potential related to pre-attention and to NMDA receptors function. In summary, clinical and experimental evidence converge to demonstrate that a genetically induced dysregulation of GSH synthesis combined with environmental insults in early development represent a major risk factor contributing to the development of schizophrenia Conclusion Based on these data, we proposed a model for PSIP1 promoter activity involving a complex interplay between yet undefined regulatory elements to modulate gene expression.
Resumo:
Ralstonia eutropha JMP134 possesses two sets of similar genes for degradation of chloroaromatic compounds, tfdCDEFB (in short: tfdI cluster) and tfdDII CII EII FII BII (tfdII cluster). The significance of two sets of tfd genes for the organism has long been elusive. Here, each of the tfd genes in the two clusters on the original plasmid pJP4 was replaced by double recombination with a gene fragment in which a kanamycin resistance gene was inserted into the respective tfd gene's reading frame. The insertion mutants were all tested for growth on 2,4-dichlorophenoxyacetic acid (2,4-D), 2-methyl-4-chlorophenoxyacetic acid (MCPA), and 3-chlorobenzoate (3-CBA). None of the tfdDII CII EII FII BII genes appeared to be essential for growth on 2,4-D or on 3-CBA. Mutations in tfdC, tfdD and tfdF also did not abolish but only retarded growth on 2,4-D, indicating that they were redundant to some extent as well. Of all tfd genes tested, only tfdE and tfdB were absolutely essential, and interruption of those two reading frames abolished growth on 2,4-D, 3-CBA ( tfdE only), and MCPA completely. Interestingly, strains with insertion mutations in the tfdI cluster and those in tfdDII, tfdCII, tfdEII and tfdBII were severely effected in their growth on MCPA, compared to the wild-type. This indicated that not only the tfdI cluster but also the tfdII cluster has an essential function for R. eutropha during growth on MCPA. In contrast, insertion mutation of tfdDII resulted in better growth of R. eutropha JMP134 on 3-CBA, which is most likely due to the prevention of toxic metabolite production in the absence of TfdDII activity.
Resumo:
Gonadotropin hormones undergo important dynamic changes during life. Their rise during puberty stimulates gonadal steroid secretion, triggering the development of secondary sexual characteristics and the acquisition of fertility. The full spectrum of possible mutations and polymorphisms in the human gonadotropins and in their receptor genes has been described in recent years. Patients harboring these mutations display a very wide range of phenotypes affecting all aspects of the reproductive axis. An important insight provided by the careful study of these patients lies in the striking gender differences in the phenotypes associated with a given mutation. As a result, the careful study of these rare patients has allowed us to better define the respective roles of luteinizing hormone and follicle-stimulating hormone in normal human pubertal development and in the achievement of full fertility potential in either males or females. In this work, we describe briefly the known mutations in the genes for both gonadotropins and their receptors, and discuss their genotype/phenotype correlations in light of these important gender differences.
Resumo:
Notch proteins are important in binary cell-fate decisions and inhibiting differentiation in many developmental systems, and aberrant Notch signaling is associated with tumorigenesis. The role of Notch signaling in mammalian skin is less well characterized and is mainly based on in vitro studies, which suggest that Notch signaling induces differentiation in mammalian skin. Conventional gene targeting is not applicable to establishing the role of Notch receptors or ligands in the skin because Notch1-/- embryos die during gestation. Therefore, we used a tissue-specific inducible gene-targeting approach to study the physiological role of the Notch1 receptor in the mouse epidermis and the corneal epithelium of adult mice. Unexpectedly, ablation of Notch1 results in epidermal and corneal hyperplasia followed by the development of skin tumors and facilitated chemical-induced skin carcinogenesis. Notch1 deficiency in skin and in primary keratinocytes results in increased and sustained expression of Gli2, causing the development of basal-cell carcinoma-like tumors. Furthermore, Notch1 inactivation in the epidermis results in derepressed beta-catenin signaling in cells that should normally undergo differentiation. Enhanced beta-catenin signaling can be reversed by re-introduction of a dominant active form of the Notch1 receptor. This leads to a reduction in the signaling-competent pool of beta-catenin, indicating that Notch1 can inhibit beta-catenin-mediated signaling. Our results indicate that Notch1 functions as a tumor-suppressor gene in mammalian skin.
Resumo:
The peroxisome proliferator-activated receptors (PPAR) alpha, beta/delta and gamma belong to the nuclear hormone receptor superfamily. As ligand-activated receptors, they form a functional transcriptional unit upon heterodimerization with retinoid X receptors (RXRs). PPARs are activated by fatty acids and their derivatives, whereas RXR is activated by 9-cis retinoic acid. This heterodimer binds to peroxisome proliferator response elements (PPRE) residing in target genes and stimulates their expression. Recent reports now indicate that PPARs and RXRs can function independently, in the absence of a hetero-partner, to modulate gene expression. Of importance, these non-canonical mechanisms underscore the impact of both cofactors and DNA on gene expression. Furthermore, these different mechanisms reveal the increasing repertoire of PPAR 'target' genes that now encompasses non-PPREs containing genes. It is also becoming apparent that understanding the regulation of PPAR expression and activity, can itself have a significant influence on how the expression of subgroups of target genes is studied and integrated in current knowledge.
Resumo:
NKT cells utilize a restricted alphabeta TCR repertoire that recognizes glycolipids in association with CD1d. The recent development of fluorescent CD1d tetramers loaded with the synthetic glycolipid alpha-galactosyl-ceramide has led to a clearer definition of NKT-cell subsets as well as important insights into their developmental origin. As many as four subsets may exist, differing in NK1.1 expression, TCR repertoire and dependence on CD1d and various glycolipids for development. Two different lineage-commitment models have been proposed, with most evidence favoring a byproduct of conventional-T-cell development.
Resumo:
Zebrafish is a good model for studying regeneration because of the rapidity with which it occurs. Better understanding of this process may lead in the future to improvement of the regenerating capacity of humans. Signaling factors are the second largest category of genes, regulated during regeneration after the regulators of wound healing. Major developmental signaling pathways play a role in this multistep process, such as Bmp, Fgf, Notch, retinoic acid, Shh, and Wnt. In the present study, we focus on TGF-β-induced genes, bigh3 and bambia. Bigh3 encodes keratoepithelin, a protein first identified as an extracellular matrix protein reported to play a role in cell adhesion, as well as in cornea formation and osteogenesis. The expression of bigh3 in zebrafish fins has previously been reported. Here we demonstrate that tgf-b1 and tgf-b3 mRNA reacted with delay, first showing no regulation at 3âeuro0/00dpa, followed by upregulation at 4 and 5âeuro0/00dpa. Tgf-b1, tgf-2, and tgf-brII mRNA were back to normal levels at 10âeuro0/00dpa. Only tgf-b3 mRNA was still upregulated at that time. Bigh3 mRNA followed the upregulation of tgf-b1, while bambia mRNA behaved similarly to tgf-b2 mRNA. We show that upregulation of bigh3 and bambia mRNA correlated with the process of fin regeneration and regulation of TGF-b signaling, suggesting a new role for these proteins.