104 resultados para GIS modelling
Resumo:
Research has demonstrated that landscape or watershed scale processes can influence instream aquatic ecosystems, in terms of the impacts of delivery of fine sediment, solutes and organic matter. Testing such impacts upon populations of organisms (i.e. at the catchment scale) has not proven straightforward and differences have emerged in the conclusions reached. This is: (1) partly because different studies have focused upon different scales of enquiry; but also (2) because the emphasis upon upstream land cover has rarely addressed the extent to which such land covers are hydrologically connected, and hence able to deliver diffuse pollution, to the drainage network However, there is a third issue. In order to develop suitable hydrological models, we need to conceptualise the process cascade. To do this, we need to know what matters to the organism being impacted by the hydrological system, such that we can identify which processes need to be modelled. Acquiring such knowledge is not easy, especially for organisms like fish that might occupy very different locations in the river over relatively short periods of time. However, and inevitably, hydrological modellers have started by building up piecemeal the aspects of the problem that we think matter to fish. Herein, we report two developments: (a) for the case of sediment associated diffuse pollution from agriculture, a risk-based modelling framework, SCIMAP, has been developed, which is distinct because it has an explicit focus upon hydrological connectivity; and (b) we use spatially distributed ecological data to infer the processes and the associated process parameters that matter to salmonid fry. We apply the model to spatially distributed salmon and fry data from the River Eden, Cumbria, England. The analysis shows, quite surprisingly, that arable land covers are relatively unimportant as drivers of fry abundance. What matters most is intensive pasture, a land cover that could be associated with a number of stressors on salmonid fry (e.g. pesticides, fine sediment) and which allows us to identify a series of risky field locations, where this land cover is readily connected to the river system by overland flow. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Aim, Location Although the alpine mouse Apodemus alpicola has been given species status since 1989, no distribution map has ever been constructed for this endemic alpine rodent in Switzerland. Based on redetermined museum material and using the Ecological-Niche Factor Analysis (ENFA), habitat-suitability maps were computed for A. alpicola, and also for the co-occurring A. flavicollis and A. sylvaticus. Methods In the particular case of habitat suitability models, classical approaches (GLMs, GAMs, discriminant analysis, etc.) generally require presence and absence data. The presence records provided by museums can clearly give useful information about species distribution and ecology and have already been used for knowledge-based mapping. In this paper, we apply the ENFA which requires only presence data, to build a habitat-suitability map of three species of Apodemus on the basis of museum skull collections. Results Interspecific niche comparisons showed that A. alpicola is very specialized concerning habitat selection, meaning that its habitat differs unequivocally from the average conditions in Switzerland, while both A. flavicollis and A. sylvaticus could be considered as 'generalists' in the study area. Main conclusions Although an adequate sampling design is the best way to collect ecological data for predictive modelling, this is a time and money consuming process and there are cases where time is simply not available, as for instance with endangered species conservation. On the other hand, museums, herbariums and other similar institutions are treasuring huge presence data sets. By applying the ENFA to such data it is possible to rapidly construct a habitat suitability model. The ENFA method not only provides two key measurements regarding the niche of a species (i.e. marginality and specialization), but also has ecological meaning, and allows the scientist to compare directly the niches of different species.
Resumo:
OBJECTIVE: To compare the pharmacokinetic and pharmacodynamic characteristics of angiotensin II receptor antagonists as a therapeutic class. DESIGN: Population pharmacokinetic-pharmacodynamic modelling study. METHODS: The data of 14 phase I studies with 10 different drugs were analysed. A common population pharmacokinetic model (two compartments, mixed zero- and first-order absorption, two metabolite compartments) was applied to the 2685 drug and 900 metabolite concentration measurements. A standard nonlinear mixed effect modelling approach was used to estimate the drug-specific parameters and their variabilities. Similarly, a pharmacodynamic model was applied to the 7360 effect measurements, i.e. the decrease of peak blood pressure response to intravenous angiotensin challenge recorded by finger photoplethysmography. The concentration of drug and metabolite in an effect compartment was assumed to translate into receptor blockade [maximum effect (Emax) model with first-order link]. RESULTS: A general pharmacokinetic-pharmacodynamic (PK-PD) model for angiotensin antagonism in healthy individuals was successfully built up for the 10 drugs studied. Representatives of this class share different pharmacokinetic and pharmacodynamic profiles. Their effects on blood pressure are dose-dependent, but the time course of the effect varies between the drugs. CONCLUSIONS: The characterisation of PK-PD relationships for these drugs gives the opportunity to optimise therapeutic regimens and to suggest dosage adjustments in specific conditions. Such a model can be used to further refine the use of this class of drugs.
Resumo:
Animal dispersal in a fragmented landscape depends on the complex interaction between landscape structure and animal behavior. To better understand how individuals disperse, it is important to explicitly represent the properties of organisms and the landscape in which they move. A common approach to modelling dispersal includes representing the landscape as a grid of equal sized cells and then simulating individual movement as a correlated random walk. This approach uses a priori scale of resolution, which limits the representation of all landscape features and how different dispersal abilities are modelled. We develop a vector-based landscape model coupled with an object-oriented model for animal dispersal. In this spatially explicit dispersal model, landscape features are defined based on their geographic and thematic properties and dispersal is modelled through consideration of an organism's behavior, movement rules and searching strategies (such as visual cues). We present the model's underlying concepts, its ability to adequately represent landscape features and provide simulation of dispersal according to different dispersal abilities. We demonstrate the potential of the model by simulating two virtual species in a real Swiss landscape. This illustrates the model's ability to simulate complex dispersal processes and provides information about dispersal such as colonization probability and spatial distribution of the organism's path.
Resumo:
The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450-CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate-enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies.
Resumo:
Rare species have restricted geographic ranges, habitat specialization, and/or small population sizes. Datasets on rare species distribution usually have few observations, limited spatial accuracy and lack of valid absences; conversely they provide comprehensive views of species distributions allowing to realistically capture most of their realized environmental niche. Rare species are the most in need of predictive distribution modelling but also the most difficult to model. We refer to this contrast as the "rare species modelling paradox" and propose as a solution developing modelling approaches that deal with a sufficiently large set of predictors, ensuring that statistical models aren't overfitted. Our novel approach fulfils this condition by fitting a large number of bivariate models and averaging them with a weighted ensemble approach. We further propose that this ensemble forecasting is conducted within a hierarchic multi-scale framework. We present two ensemble models for a test species, one at regional and one at local scale, each based on the combination of 630 models. In both cases, we obtained excellent spatial projections, unusual when modelling rare species. Model results highlight, from a statistically sound approach, the effects of multiple drivers in a same modelling framework and at two distinct scales. From this added information, regional models can support accurate forecasts of range dynamics under climate change scenarios, whereas local models allow the assessment of isolated or synergistic impacts of changes in multiple predictors. This novel framework provides a baseline for adaptive conservation, management and monitoring of rare species at distinct spatial and temporal scales.
Resumo:
One of the world's largest wollastonite deposits was formed at the contact of the northern Hunter Mountain Batholith (California, USA) in Paleozoic sediments. Wollastonite occurs as zones of variable thickness surrounding layers or nodules of quartzite in limestones. A minimum formation temperature of 650 degrees C is estimated from isolated periclase-bearing lenses in that area. Contact metamorphism of siliceous carbonates has produced mineral assemblages that are consistent with heterogeneous, and partly limited infiltration of water-rich fluids, compatible with O-18/O-16 and C-13/C-12 isotopic patterns recorded in carbonates. Oxygen isotope compositions of wollastonites in the study area may also not require infiltration of large quantities of externally-derived fluids that were out of equilibrium with the rocks. 8180 values of wollastonite are high (14.8 parts per thousand to 25.0 parts per thousand; median: 19.7 parts per thousand) and close to those of the host limestone (19.7 parts per thousand to 28 parts per thousand; median: 24.9 parts per thousand) and quartz (18.0 parts per thousand. to 29.1 parts per thousand; median: 22.6 parts per thousand). Isotopic disequilibrium exists at quartz/wollastonite and wollastonite/calcite boundaries. Therefore, classical batch/Rayleigh fractionation models based on reactant and product equilibrium are not applicable to the wollastonite rims. An approach that relies on local instantaneous mass balance for the reactants, based on the wollastonite-forming reaction is suggested as an alternative way to model wollastonite reaction rims. This model reproduces many of the measured delta O-18 values of wollastonite reaction rims of the current study to within +/- 1 parts per thousand, even though the wollastonite compositions vary by almost 10 parts per thousand. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: Excessive exposure to solar Ultra-Violet (UV) light is the main cause of most skin cancers in humans. Factors such as the increase of solar irradiation at ground level (anthropic pollution), the rise in standard of living (vacation in sunny areas), and (mostly) the development of outdoor activities have contributed to increase exposure. Thus, unsurprisingly, incidence of skin cancers has increased over the last decades more than that of any other cancer. Melanoma is the most lethal cutaneous cancer, while cutaneous carcinomas are the most common cancer type worldwide. UV exposure depends on environmental as well as individual factors related to activity. The influence of individual factors on exposure among building workers was investigated in a previous study. Posture and orientation were found to account for at least 38% of the total variance of relative individual exposure. A high variance of short-term exposure was observed between different body locations, indicating the occurrence of intense, subacute exposures. It was also found that effective short-term exposure ranged between 0 and 200% of ambient irradiation, suggesting that ambient irradiation is a poor predictor of effective exposure. Various dosimetric techniques enable to assess individual effective exposure, but dosimetric measurements remain tedious and tend to be situation-specific. As a matter of facts, individual factors (exposure time, body posture and orientation in the sun) often limit the extrapolation of exposure results to similar activities conducted in other conditions. Objective: The research presented in this paper aims at developing and validating a predictive tool of effective individual exposure to solar UV. Methods: Existing computer graphic techniques (3D rendering) were adapted to reflect solar exposure conditions and calculate short-term anatomical doses. A numerical model, represented as a 3D triangular mesh, is used to represent the exposed body. The amount of solar energy received by each "triangle is calculated, taking into account irradiation intensity, incidence angle and possible shadowing from other body parts. The model take into account the three components of the solar irradiation (direct, diffuse and albedo) as well as the orientation and posture of the body. Field measurements were carried out using a forensic mannequin at the Payerne MeteoSwiss station. Short-term dosimetric measurements were performed in 7 anatomical locations for 5 body postures. Field results were compared to the model prediction obtained from the numerical model. Results: The best match between prediction and measurements was obtained for upper body parts such as shoulders (Ratio Modelled/Measured; Mean = 1.21, SD = 0.34) and neck (Mean = 0.81, SD = 0.32). Small curved body parts such as forehead (Mean = 6.48, SD = 9.61) exhibited a lower matching. The prediction is less accurate for complex postures such as kneeling (Mean = 4.13, SD = 8.38) compared to standing up (Mean = 0.85, SD = 0.48). The values obtained from the dosimeters and the ones computed from the model are globally consistent. Conclusion: Although further development and validation are required, these results suggest that effective exposure could be predicted for a given activity (work or leisure) in various ambient irradiation conditions. Using a generic modelling approach is of high interest in terms of implementation costs as well as predictive and retrospective capabilities.
Resumo:
Aim We investigated the late Quaternary history of two closely related and partly sympatric species of Primula from the south-western European Alps, P. latifolia Lapeyr. and P. marginata Curtis, by combining phylogeographical and palaeodistribution modelling approaches. In particular, we were interested in whether the two approaches were congruent and identified the same glacial refugia. Location South-western European Alps. Methods For the phylogeographical analysis we included 353 individuals from 28 populations of P. marginata and 172 individuals from 15 populations of P. latifolia and used amplified fragment length polymorphisms (AFLPs). For palaeodistribution modelling, species distribution models (SDMs) were based on extant species occurrences and then projected to climate models (CCSM, MIROC) of the Last Glacial Maximum (LGM), approximately 21 ka. Results The locations of the modelled LGM refugia were confirmed by various indices of genetic variation. The refugia of the two species were largely geographically isolated, overlapping only 6% to 11% of the species' total LGM distribution. This overlap decreased when the position of the glacial ice sheet and the differential elevational and edaphic distributions of the two species were considered. Main conclusions The combination of phylogeography and palaeodistribution modelling proved useful in locating putative glacial refugia of two alpine species of Primula. The phylogeographical data allowed us to identify those parts of the modelled LGM refugial area that were likely source areas for recolonization. The use of SDMs predicted LGM refugial areas substantially larger and geographically more divergent than could have been predicted by phylogeographical data alone
Resumo:
Résumé Le cancer du sein est le cancer le plus commun chez les femmes et est responsable de presque 30% de tous les nouveaux cas de cancer en Europe. On estime le nombre de décès liés au cancer du sein en Europe est à plus de 130.000 par an. Ces chiffres expliquent l'impact social considérable de cette maladie. Les objectifs de cette thèse étaient: (1) d'identifier les prédispositions et les mécanismes biologiques responsables de l'établissement des sous-types spécifiques de cancer du sein; (2) les valider dans un modèle ín vivo "humain-dans-souris"; et (3) de développer des traitements spécifiques à chaque sous-type de cancer du sein identifiés. Le premier objectif a été atteint par l'intermédiaire de l'analyse des données d'expression de gènes des tumeurs, produite dans notre laboratoire. Les données obtenues par puces à ADN ont été produites à partir de 49 biopsies des tumeurs du sein provenant des patientes participant dans l'essai clinique EORTC 10994/BIG00-01. Les données étaient très riches en information et m'ont permis de valider des données précédentes des autres études d'expression des gènes dans des tumeurs du sein. De plus, cette analyse m'a permis d'identifier un nouveau sous-type biologique de cancer du sein. Dans la première partie de la thèse, je décris I identification des tumeurs apocrines du sein par l'analyse des puces à ADN et les implications potentielles de cette découverte pour les applications cliniques. Le deuxième objectif a été atteint par l'établissement d'un modèle de cancer du sein humain, basé sur des cellules épithéliales mammaires humaines primaires (HMECs) dérivées de réductions mammaires. J'ai choisi d'adapter un système de culture des cellules en suspension basé sur des mammosphères précédemment décrit et pat décidé d'exprimer des gènes en utilisant des lentivirus. Dans la deuxième partie de ma thèse je décris l'établissement d'un système de culture cellulaire qui permet la transformation quantitative des HMECs. Par la suite, j'ai établi un modèle de xénogreffe dans les souris immunodéficientes NOD/SCID, qui permet de modéliser la maladie humaine chez la souris. Dans la troisième partie de ma thèse je décris et je discute les résultats que j'ai obtenus en établissant un modèle estrogène-dépendant de cancer du sein par transformation quantitative des HMECs avec des gènes définis, identifiés par analyse de données d'expression des gènes dans le cancer du sein. Les cellules transformées dans notre modèle étaient estrogène-dépendantes pour la croissance, diploïdes et génétiquement normales même après la culture cellulaire in vitro prolongée. Les cellules formaient des tumeurs dans notre modèle de xénogreffe et constituaient des métastases péritonéales disséminées et du foie. Afin d'atteindre le troisième objectif de ma thèse, j'ai défini et examiné des stratégies de traitement qui permettent réduire les tumeurs et les métastases. J'ai produit un modèle de cancer du sein génétiquement défini et positif pour le récepteur de l'estrogène qui permet de modéliser le cancer du sein estrogène-dépendant humain chez la souris. Ce modèle permet l'étude des mécanismes impliqués dans la formation des tumeurs et des métastases. Abstract Breast cancer is the most common cancer in women and accounts for nearly 30% of all new cancer cases in Europe. The number of deaths from breast cancer in Europe is estimated to be over 130,000 each year, implying the social impact of the disease. The goals of this thesis were first, to identify biological features and mechanisms --responsible for the establishment of specific breast cancer subtypes, second to validate them in a human-in-mouse in vivo model and third to develop specific treatments for identified breast cancer subtypes. The first objective was achieved via the analysis of tumour gene expression data produced in our lab. The microarray data were generated from 49 breast tumour biopsies that were collected from patients enrolled in the clinical trial EORTC 10994/BIG00-01. The data set was very rich in information and allowed me to validate data of previous breast cancer gene expression studies and to identify biological features of a novel breast cancer subtype. In the first part of the thesis I focus on the identification of molecular apacrine breast tumours by microarray analysis and the potential imptìcation of this finding for the clinics. The second objective was attained by the production of a human breast cancer model system based on primary human mammary epithelial cells {HMECs) derived from reduction mammoplasties. I have chosen to adopt a previously described suspension culture system based on mammospheres and expressed selected target genes using lentiviral expression constructs. In the second part of my thesis I mainly focus on the establishment of a cell culture system allowing for quantitative transformation of HMECs. I then established a xenograft model in immunodeficient NOD/SCID mice, allowing to model human disease in a mouse. In the third part of my thesis I describe and discuss the results that I obtained while establishing an oestrogen-dependent model of breast cancer by quantitative transformation of HMECs with defined genes identified after breast cancer gene expression data analysis. The transformed cells in our model are oestrogen-dependent for growth; remain diploid and genetically normal even after prolonged cell culture in vitro. The cells farm tumours and form disseminated peritoneal and liver metastases in our xenograft model. Along the lines of the third objective of my thesis I defined and tested treatment schemes allowing reducing tumours and metastases. I have generated a genetically defined model of oestrogen receptor alpha positive human breast cancer that allows to model human oestrogen-dependent breast cancer in a mouse and enables the study of mechanisms involved in tumorigenesis and metastasis.
Resumo:
The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by processbased modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws.We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25m resolution.