34 resultados para Fuzzy-Wavelet Neural Network
Resumo:
Intellectual disability has long been associated with deficits in socio-emotional processing. However, studies investigating brain dynamics of maladaptive socio-emotional skills associated with intellectual disability are scarce. Here, we compared differences in brain activity between low intelligence quotient (I.Q.<75, N=13) and normal controls (N=15) while evaluating their subjective emotions. Positive (P) and negative (N) valenced pictures were presented one at a time to participants of both groups, at a rate of ¾. The task required that each participant evaluate their subjective emotion and press a predefined push-button when done, alternatively P and N. Electroencephalographic (EEG) signals were continuously recorded, and the 1000ms time window following each picture was analyzed offline for power in frequency domain. Alpha low (8-10Hz) and upper (10-13Hz) frequency bands were then compared for both groups and for both P and N emotions in 12 distributed scalp electrodes. The qualitative evaluation of emotions was similar between both groups, with constant longer reaction times for the low IQ participants. The EEG signal comparison shows marked power decrease in upper alpha frequency range for N emotions in low intelligence group. Otherwise no significant difference was noticed between low and normal IQ. Main findings of the present study are (1) results do not support the hypothesis that impairment in developmental intelligence roots in maladaptive emotional processing; (2) the strong alpha power suppression during negative-induced emotions suggests the involvement of an extended neural network and more effortful inhibition processes than positive ones. We call for further studies with a larger sample.
Resumo:
Methods used to analyze one type of nonstationary stochastic processes?the periodically correlated process?are considered. Two methods of one-step-forward prediction of periodically correlated time series are examined. One-step-forward predictions made in accordance with an autoregression model and a model of an artificial neural network with one latent neuron layer and with an adaptation mechanism of network parameters in a moving time window were compared in terms of efficiency. The comparison showed that, in the case of prediction for one time step for time series of mean monthly water discharge, the simpler autoregression model is more efficient.
Resumo:
The paper deals with the development and application of the methodology for automatic mapping of pollution/contamination data. General Regression Neural Network (GRNN) is considered in detail and is proposed as an efficient tool to solve this problem. The automatic tuning of isotropic and an anisotropic GRNN model using cross-validation procedure is presented. Results are compared with k-nearest-neighbours interpolation algorithm using independent validation data set. Quality of mapping is controlled by the analysis of raw data and the residuals using variography. Maps of probabilities of exceeding a given decision level and ?thick? isoline visualization of the uncertainties are presented as examples of decision-oriented mapping. Real case study is based on mapping of radioactively contaminated territories.
Resumo:
Mountain regions worldwide are particularly sensitive to on-going climate change. Specifically in the Alps in Switzerland, the temperature has increased twice as fast than in the rest of the Northern hemisphere. Water temperature closely follows the annual air temperature cycle, severely impacting streams and freshwater ecosystems. In the last 20 years, brown trout (Salmo trutta L) catch has declined by approximately 40-50% in many rivers in Switzerland. Increasing water temperature has been suggested as one of the most likely cause of this decline. Temperature has a direct effect on trout population dynamics through developmental and disease control but can also indirectly impact dynamics via food-web interactions such as resource availability. We developed a spatially explicit modelling framework that allows spatial and temporal projections of trout biomass using the Aare river catchment as a model system, in order to assess the spatial and seasonal patterns of trout biomass variation. Given that biomass has a seasonal variation depending on trout life history stage, we developed seasonal biomass variation models for three periods of the year (Autumn-Winter, Spring and Summer). Because stream water temperature is a critical parameter for brown trout development, we first calibrated a model to predict water temperature as a function of air temperature to be able to further apply climate change scenarios. We then built a model of trout biomass variation by linking water temperature to trout biomass measurements collected by electro-fishing in 21 stations from 2009 to 2011. The different modelling components of our framework had overall a good predictive ability and we could show a seasonal effect of water temperature affecting trout biomass variation. Our statistical framework uses a minimum set of input variables that make it easily transferable to other study areas or fish species but could be improved by including effects of the biotic environment and the evolution of demographical parameters over time. However, our framework still remains informative to spatially highlight where potential changes of water temperature could affect trout biomass. (C) 2015 Elsevier B.V. All rights reserved.-