38 resultados para Fractal time-space
Resumo:
Time-lapse geophysical measurements are widely used to monitor the movement of water and solutes through the subsurface. Yet commonly used deterministic least squares inversions typically suffer from relatively poor mass recovery, spread overestimation, and limited ability to appropriately estimate nonlinear model uncertainty. We describe herein a novel inversion methodology designed to reconstruct the three-dimensional distribution of a tracer anomaly from geophysical data and provide consistent uncertainty estimates using Markov chain Monte Carlo simulation. Posterior sampling is made tractable by using a lower-dimensional model space related both to the Legendre moments of the plume and to predefined morphological constraints. Benchmark results using cross-hole ground-penetrating radar travel times measurements during two synthetic water tracer application experiments involving increasingly complex plume geometries show that the proposed method not only conserves mass but also provides better estimates of plume morphology and posterior model uncertainty than deterministic inversion results.
Resumo:
The proportion of population living in or around cites is more important than ever. Urban sprawl and car dependence have taken over the pedestrian-friendly compact city. Environmental problems like air pollution, land waste or noise, and health problems are the result of this still continuing process. The urban planners have to find solutions to these complex problems, and at the same time insure the economic performance of the city and its surroundings. At the same time, an increasing quantity of socio-economic and environmental data is acquired. In order to get a better understanding of the processes and phenomena taking place in the complex urban environment, these data should be analysed. Numerous methods for modelling and simulating such a system exist and are still under development and can be exploited by the urban geographers for improving our understanding of the urban metabolism. Modern and innovative visualisation techniques help in communicating the results of such models and simulations. This thesis covers several methods for analysis, modelling, simulation and visualisation of problems related to urban geography. The analysis of high dimensional socio-economic data using artificial neural network techniques, especially self-organising maps, is showed using two examples at different scales. The problem of spatiotemporal modelling and data representation is treated and some possible solutions are shown. The simulation of urban dynamics and more specifically the traffic due to commuting to work is illustrated using multi-agent micro-simulation techniques. A section on visualisation methods presents cartograms for transforming the geographic space into a feature space, and the distance circle map, a centre-based map representation particularly useful for urban agglomerations. Some issues on the importance of scale in urban analysis and clustering of urban phenomena are exposed. A new approach on how to define urban areas at different scales is developed, and the link with percolation theory established. Fractal statistics, especially the lacunarity measure, and scale laws are used for characterising urban clusters. In a last section, the population evolution is modelled using a model close to the well-established gravity model. The work covers quite a wide range of methods useful in urban geography. Methods should still be developed further and at the same time find their way into the daily work and decision process of urban planners. La part de personnes vivant dans une région urbaine est plus élevé que jamais et continue à croître. L'étalement urbain et la dépendance automobile ont supplanté la ville compacte adaptée aux piétons. La pollution de l'air, le gaspillage du sol, le bruit, et des problèmes de santé pour les habitants en sont la conséquence. Les urbanistes doivent trouver, ensemble avec toute la société, des solutions à ces problèmes complexes. En même temps, il faut assurer la performance économique de la ville et de sa région. Actuellement, une quantité grandissante de données socio-économiques et environnementales est récoltée. Pour mieux comprendre les processus et phénomènes du système complexe "ville", ces données doivent être traitées et analysées. Des nombreuses méthodes pour modéliser et simuler un tel système existent et sont continuellement en développement. Elles peuvent être exploitées par le géographe urbain pour améliorer sa connaissance du métabolisme urbain. Des techniques modernes et innovatrices de visualisation aident dans la communication des résultats de tels modèles et simulations. Cette thèse décrit plusieurs méthodes permettant d'analyser, de modéliser, de simuler et de visualiser des phénomènes urbains. L'analyse de données socio-économiques à très haute dimension à l'aide de réseaux de neurones artificiels, notamment des cartes auto-organisatrices, est montré à travers deux exemples aux échelles différentes. Le problème de modélisation spatio-temporelle et de représentation des données est discuté et quelques ébauches de solutions esquissées. La simulation de la dynamique urbaine, et plus spécifiquement du trafic automobile engendré par les pendulaires est illustrée à l'aide d'une simulation multi-agents. Une section sur les méthodes de visualisation montre des cartes en anamorphoses permettant de transformer l'espace géographique en espace fonctionnel. Un autre type de carte, les cartes circulaires, est présenté. Ce type de carte est particulièrement utile pour les agglomérations urbaines. Quelques questions liées à l'importance de l'échelle dans l'analyse urbaine sont également discutées. Une nouvelle approche pour définir des clusters urbains à des échelles différentes est développée, et le lien avec la théorie de la percolation est établi. Des statistiques fractales, notamment la lacunarité, sont utilisées pour caractériser ces clusters urbains. L'évolution de la population est modélisée à l'aide d'un modèle proche du modèle gravitaire bien connu. Le travail couvre une large panoplie de méthodes utiles en géographie urbaine. Toutefois, il est toujours nécessaire de développer plus loin ces méthodes et en même temps, elles doivent trouver leur chemin dans la vie quotidienne des urbanistes et planificateurs.
Resumo:
Aim Identifying climatic niche shifts and their drivers is important to accurately predict the risk of biological invasions. The niches of non-native plants and birds have recently been assessed in large-scale multi-species studies, but such large-scale tests are lacking for non-native reptiles and amphibians (herpetofauna). Furthermore, little is known about the factors contributing to niche shifts when they occur. Based on the occurrence of 71 reptile and amphibian species, we compared native and non-native realized niches in 101 invaded ranges at a worldwide scale and identified the factors that affect niche shifts. Location The world except the Antarctic. Methods We assessed climatic niche dynamics in a gridded environmental space allowing the quantification of niche overlap and expansion into climatic conditions not colonized by the species in their native range. We analyzed the factors affecting niche shifts using a model averaging approach based on generalized linear mixed-effects models. Results Approximately 57% of the invaded ranges (51% for amphibians and 61% for reptiles) showed niche shifts (≥10% expansion in the realized climatic niche). Island endemics, species introduced to Oceania and invaded ranges outside the native biogeographic realm showed a higher proportion of niche shifts. Niche shifts were more likely for species that had smaller native range sizes, were introduced earlier into a new range or invaded areas located at lower latitudes than the native range. Main conclusions The proportion of niche shifts for non-native herpetofauna was higher than those for Holarctic non-native plants and European non-native birds. The 'climate matching hypothesis' should be used with caution for species shifting their niche because it could underestimate the risk of their establishment.
Resumo:
Understanding the influence of pore space characteristics on the hydraulic conductivity and spectral induced polarization (SIP) response is critical for establishing relationships between the electrical and hydrological properties of surficial unconsolidated sedimentary deposits, which host the bulk of the world's readily accessible groundwater resources. Here, we present the results of laboratory SIP measurements on industrial-grade, saturated quartz samples with granulometric characteristics ranging from fine sand to fine gravel, which can be regarded as proxies for widespread alluvial deposits. We altered the pore space characteristics by changing (i) the grain size spectra, (ii) the degree of compaction, and (iii) the level of sorting. We then examined how these changes affect the SIP response, the hydraulic conductivity, and the specific surface area of the considered samples. In general, the results indicate a clear connection between the SIP response and the granulometric as well as pore space characteristics. In particular, we observe a systematic correlation between the hydraulic conductivity and the relaxation time of the Cole-Cole model describing the observed SIP effect for the entire range of considered grain sizes. The results do, however, also indicate that the detailed nature of these relations depends strongly on variations in the pore space characteristics, such as, for example, the degree of compaction. The results of this study underline the complexity of the origin of the SIP signal as well as the difficulty to relate it to a single structural factor of a studied sample, and hence raise some fundamental questions with regard to the practical use of SIP measurements as site- and/or sample-independent predictors of the hydraulic conductivity.
Resumo:
Aim Species distribution models (SDMs) based on current species ranges underestimate the potential distribution when projected in time and/or space. A multi-temporal model calibration approach has been suggested as an alternative, and we evaluate this using 13,000 years of data. Location Europe. Methods We used fossil-based records of presence for Picea abies, Abies alba and Fagus sylvatica and six climatic variables for the period 13,000 to 1000yr bp. To measure the contribution of each 1000-year time step to the total niche of each species (the niche measured by pooling all the data), we employed a principal components analysis (PCA) calibrated with data over the entire range of possible climates. Then we projected both the total niche and the partial niches from single time frames into the PCA space, and tested if the partial niches were more similar to the total niche than random. Using an ensemble forecasting approach, we calibrated SDMs for each time frame and for the pooled database. We projected each model to current climate and evaluated the results against current pollen data. We also projected all models into the future. Results Niche similarity between the partial and the total-SDMs was almost always statistically significant and increased through time. SDMs calibrated from single time frames gave different results when projected to current climate, providing evidence of a change in the species realized niches through time. Moreover, they predicted limited climate suitability when compared with the total-SDMs. The same results were obtained when projected to future climates. Main conclusions The realized climatic niche of species differed for current and future climates when SDMs were calibrated considering different past climates. Building the niche as an ensemble through time represents a way forward to a better understanding of a species' range and its ecology in a changing climate.
Resumo:
A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances--including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS) scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participants performing a task involving self-projection in space. However, not much is known about the relationship between temporal perceptual aberration, behavior and brain activity. To this aim, we composed a temporal Perceptual Aberration Scale (tPAS) similar to the traditional PAS. Testing on 170 participants suggested similar performance for PAS and tPAS. We then correlated tPAS and PAS scores to participants' performance and neural activity in a task of self-projection in time. tPAS scores correlated positively with reaction times across task conditions, as did PAS scores. Evoked potential mapping and electrical neuroimaging showed self-projection in time to recruit a network of brain regions at the left anterior temporal cortex, right temporo-parietal junction, and occipito-temporal cortex, and duration of activation in this network positively correlated with tPAS and PAS scores. These data demonstrate that schizotypal perceptual aberrations of both time and space, as reflected by tPAS and PAS scores, are positively correlated with performance and brain activation during self-projection in time in healthy individuals along the schizophrenia spectrum.
Resumo:
BACKGROUND: Surgical site infection (SSI) is a common cause of major morbidity after liver resection. This study aimed to identify the risk factors for incisional and organ/space SSIs after liver resection. METHODS: Our liver surgery database was retrospectively analyzed for patients treated between January 2009 and November 2012 in a tertiary care Swiss hospital. Univariate and multivariate analyses were conducted on preoperative, intraoperative, and postoperative variables to identify risk factors for incisional and organ/space SSIs. RESULTS: In a total of 226 patients, SSI incidences were 12.8 % (incisional), 4.0 % (organ/space), and 1.8 % (both). Univariate analysis showed that incisional SSIs were associated with high American Society of Anesthesiologists (ASA) scores, preoperative anemia, hypoalbuminemia, low prothrombin time, viral or alcoholic chronic hepatitis, liver cirrhosis, and prolonged operation times. Organ/space SSIs were associated with high rates of red blood cell transfusions, concomitant bowel surgery, and prolonged operation times. Multivariate analysis revealed that risk factors for incisional SSIs were anemia [odds ratio (OR) 2.82], high ASA scores (OR 2.88), presence of hepatitis or cirrhosis (OR 5.07), and prolonged operation times (OR 9.61). The only risk factor for organ/space SSIs was concomitant bowel surgery (OR 5.53). Hospital stays were similar in organ/space and incisional SSI groups, but significantly longer for those with both organ/space and incisional SSIs. CONCLUSIONS: High ASA scores, anemia, chronic hepatitis or liver cirrhosis, and prolonged operations increased the risk of incisional SSIs; concomitant bowel surgery increased the risk of organ/space SSI. Specific precautions to prevent organ/space and incisional SSIs may shorten hospital stays.
Resumo:
We have investigated the phenomenon of deprivation in contemporary Switzerland through the adoption of a multidimensional, dynamic approach. By applying Self Organizing Maps (SOM) to a set of 33 non-monetary indicators from the 2009 wave of the Swiss Household Panel (SHP), we identified 13 prototypical forms (or clusters) of well-being, financial vulnerability, psycho-physiological fragility and deprivation within a topological dimensional space. Then new data from the previous waves (2003 to 2008) were classified by the SOM model, making it possible to estimate the weight of the different clusters in time and reconstruct the dynamics of stability and mobility of individuals within the map. Looking at the transition probabilities between year t and year t+1, we observed that the paths of mobility which catalyze the largest number of observations are those connecting clusters that are adjacent on the topological space.