60 resultados para Foundation design
Resumo:
Chemosensory receptors convert an enormous diversity of chemical signals from the external world into a common language of electrical activity in the brain. Mammals and insects use several families of transmembrane receptor proteins to recognize distinct classes of volatile and non-volatile chemicals that are produced by conspecifics or other environmental sources. A comparison of the signalling mechanisms of mammalian and insect receptors has revealed an unexpected functional distinction: mammals rely almost exclusively on metabotropic ligand-binding receptors, which use second messenger signalling cascades to indirectly activate ion channels, whereas insects use ionotropic receptors, which are gated directly by chemical stimuli, thereby leading to neuronal depolarization. In this review, we consider possible reasons for this dichotomy, taking into account biophysical, cell biological, ecological and evolutionary influences on how information is extracted from chemosensory cues by these animal classes.
Resumo:
Review of the book: The Tinkerer's Accomplice: How Design Emerges From Life Itself by J. Scott TurnerHarvard University Press: 2007. 304 pp.
Resumo:
A new strategy for the rapid identification of new malaria antigens based on protein structural motifs was previously described. We identified and evaluated the malaria vaccine potential of fragments of several malaria antigens containing α-helical coiled coil protein motifs. By taking advantage of the relatively short size of these structural fragments, we constructed different poly-epitopes in which 3 or 4 of these segments were joined together via a non-immunogenic linker. Only peptides that are targets of human antibodies with anti-parasite in vitro biological activities were incorporated. One of the constructs, P181, was well recognized by sera and peripheral blood mononuclear cells (PBMC) of adults living in malaria-endemic areas. Affinity purified antigen-specific human antibodies and sera from P181-immunized mice recognised native proteins on malaria-infected erythrocytes in both immunofluorescence and western blot assays. In addition, specific antibodies inhibited parasite development in an antibody dependent cellular inhibition (ADCI) assay. Naturally induced antigen-specific human antibodies were at high titers and associated with clinical protection from malaria in longitudinal follow-up studies in Senegal.
Resumo:
Osteoporosis is a serious worldwide epidemic. FRAX® is a web-based tool developed by the Sheffield WHO Collaborating Center team, that integrates clinical risk factors and femoral neck BMD and calculates the 10 year fracture probability in order to help health care professionals identify patients who need treatment. However, only 31 countries have a FRAX® calculator. In the absence of a FRAX® model for a particular country, it has been suggested to use a surrogate country for which the epidemiology of osteoporosis most closely approximates the index country. More specific recommendations for clinicians in these countries are not available. In North America, concerns have also been raised regarding the assumptions used to construct the US ethnic specific FRAX® calculators with respect to the correction factors applied to derive fracture probabilities in Blacks, Asians and Hispanics in comparison to Whites. In addition, questions were raised about calculating fracture risk in other ethnic groups e.g., Native Americans and First Canadians. The International Society for Clinical Densitometry (ISCD) in conjunction with the International Osteoporosis Foundation (IOF) assembled an international panel of experts that ultimately developed joint Official Positions of the ISCD and IOF advising clinicians regarding FRAX® usage. As part of the process, the charge of the FRAX® International Task Force was to review and synthesize data regarding geographic and race/ethnic variability in hip fractures, non-hip osteoporotic fractures, and make recommendations about the use of FRAX® in ethnic groups and countries without a FRAX® calculator. This synthesis was presented to the expert panel and constitutes the data on which the subsequent Official Positions are predicated. A summary of the International Task Force composition and charge is presented here.
Resumo:
Childhood obesity and physical inactivity are increasing dramatically worldwide. Children of low socioeconomic status and/or children of migrant background are especially at risk. In general, the overall effectiveness of school-based programs on health-related outcomes has been disappointing. A special gap exists for younger children and in high risk groups. This paper describes the rationale, design, curriculum, and evaluation of a multicenter preschool randomized intervention study conducted in areas with a high migrant population in two out of 26 Swiss cantons. Twenty preschool classes in the German (canton St. Gallen) and another 20 in the French (canton Vaud) part of Switzerland were separately selected and randomized to an intervention and a control arm by the use of opaque envelopes. The multidisciplinary lifestyle intervention aimed to increase physical activity and sleep duration, to reinforce healthy nutrition and eating behaviour, and to reduce media use. According to the ecological model, it included children, their parents and the teachers. The regular teachers performed the majority of the intervention and were supported by a local health promoter. The intervention included physical activity lessons, adaptation of the built infrastructure; promotion of regional extracurricular physical activity; playful lessons about nutrition, media use and sleep, funny homework cards and information materials for teachers and parents. It lasted one school year. Baseline and post-intervention evaluations were performed in both arms. Primary outcome measures included BMI and aerobic fitness (20 m shuttle run test). Secondary outcomes included total (skinfolds, bioelectrical impedance) and central (waist circumference) body fat, motor abilities (obstacle course, static and dynamic balance), physical activity and sleep duration (accelerometry and questionnaires), nutritional behaviour and food intake, media use, quality of life and signs of hyperactivity (questionnaires), attention and spatial working memory ability (two validated tests). Researchers were blinded to group allocation. The purpose of this paper is to outline the design of a school-based multicenter cluster randomized, controlled trial aiming to reduce body mass index and to increase aerobic fitness in preschool children in culturally different parts of Switzerland with a high migrant population. Trial Registration: (clinicaltrials.gov) NCT00674544.
Resumo:
BACKGROUND AND PURPOSE: Stroke registries are valuable tools for obtaining information about stroke epidemiology and management. The Acute STroke Registry and Analysis of Lausanne (ASTRAL) prospectively collects epidemiological, clinical, laboratory and multimodal brain imaging data of acute ischemic stroke patients in the Centre Hospitalier Universitaire Vaudois (CHUV). Here, we provide design and methods used to create ASTRAL and present baseline data of our patients (2003 to 2008). METHODS: All consecutive patients admitted to CHUV between January 1, 2003 and December 31, 2008 with acute ischemic stroke within 24 hours of symptom onset were included in ASTRAL. Patients arriving beyond 24 hours, with transient ischemic attack, intracerebral hemorrhage, subarachnoidal hemorrhage, or cerebral sinus venous thrombosis, were excluded. Recurrent ischemic strokes were registered as new events. RESULTS: Between 2003 and 2008, 1633 patients and 1742 events were registered in ASTRAL. There was a preponderance of males, even in the elderly. Cardioembolic stroke was the most frequent type of stroke. Most strokes were of minor severity (National Institute of Health Stroke Scale [NIHSS] score ≤ 4 in 40.8% of patients). Cardioembolic stroke and dissections presented with the most severe clinical picture. There was a significant number of patients with unknown onset stroke, including wake-up stroke (n=568, 33.1%). Median time from last-well time to hospital arrival was 142 minutes for known onset and 759 minutes for unknown-onset stroke. The rate of intravenous or intraarterial thrombolysis between 2003 and 2008 increased from 10.8% to 20.8% in patients admitted within 24 hours of last-well time. Acute brain imaging was performed in 1695 patients (97.3%) within 24 hours. In 1358 patients (78%) who underwent acute computed tomography angiography, 717 patients (52.8%) had significant abnormalities. Of the 1068 supratentorial stroke patients who underwent acute perfusion computed tomography (61.3%), focal hypoperfusion was demonstrated in 786 patients (73.6%). CONCLUSIONS: This hospital-based prospective registry of consecutive acute ischemic strokes incorporates demographic, clinical, metabolic, acute perfusion, and arterial imaging. It is characterized by a high proportion of minor and unknown-onset strokes, short onset-to-admission time for known-onset patients, rapidly increasing thrombolysis rates, and significant vascular and perfusion imaging abnormalities in the majority of patients.
Resumo:
Protein-protein interactions encode the wiring diagram of cellular signaling pathways and their deregulations underlie a variety of diseases, such as cancer. Inhibiting protein-protein interactions with peptide derivatives is a promising way to develop new biological and therapeutic tools. Here, we develop a general framework to computationally handle hundreds of non-natural amino acid sidechains and predict the effect of inserting them into peptides or proteins. We first generate all structural files (pdb and mol2), as well as parameters and topologies for standard molecular mechanics software (CHARMM and Gromacs). Accurate predictions of rotamer probabilities are provided using a novel combined knowledge and physics based strategy. Non-natural sidechains are useful to increase peptide ligand binding affinity. Our results obtained on non-natural mutants of a BCL9 peptide targeting beta-catenin show very good correlation between predicted and experimental binding free-energies, indicating that such predictions can be used to design new inhibitors. Data generated in this work, as well as PyMOL and UCSF Chimera plug-ins for user-friendly visualization of non-natural sidechains, are all available at http://www.swisssidechain.ch. Our results enable researchers to rapidly and efficiently work with hundreds of non-natural sidechains.
Resumo:
Essential hypertension is a multifactorial disorder and is the main risk factor for renal and cardiovascular complications. The research on the genetics of hypertension has been frustrated by the small predictive value of the discovered genetic variants. The HYPERGENES Project investigated associations between genetic variants and essential hypertension pursuing a 2-stage study by recruiting cases and controls from extensively characterized cohorts recruited over many years in different European regions. The discovery phase consisted of 1865 cases and 1750 controls genotyped with 1M Illumina array. Best hits were followed up in a validation panel of 1385 cases and 1246 controls that were genotyped with a custom array of 14 055 markers. We identified a new hypertension susceptibility locus (rs3918226) in the promoter region of the endothelial NO synthase gene (odds ratio: 1.54 [95% CI: 1.37-1.73]; combined P=2.58 · 10(-13)). A meta-analysis, using other in silico/de novo genotyping data for a total of 21 714 subjects, resulted in an overall odds ratio of 1.34 (95% CI: 1.25-1.44; P=1.032 · 10(-14)). The quantitative analysis on a population-based sample revealed an effect size of 1.91 (95% CI: 0.16-3.66) for systolic and 1.40 (95% CI: 0.25-2.55) for diastolic blood pressure. We identified in silico a potential binding site for ETS transcription factors directly next to rs3918226, suggesting a potential modulation of endothelial NO synthase expression. Biological evidence links endothelial NO synthase with hypertension, because it is a critical mediator of cardiovascular homeostasis and blood pressure control via vascular tone regulation. This finding supports the hypothesis that there may be a causal genetic variation at this locus.
Resumo:
The n-octanol/water partition coefficient (log Po/w) is a key physicochemical parameter for drug discovery, design, and development. Here, we present a physics-based approach that shows a strong linear correlation between the computed solvation free energy in implicit solvents and the experimental log Po/w on a cleansed data set of more than 17,500 molecules. After internal validation by five-fold cross-validation and data randomization, the predictive power of the most interesting multiple linear model, based on two GB/SA parameters solely, was tested on two different external sets of molecules. On the Martel druglike test set, the predictive power of the best model (N = 706, r = 0.64, MAE = 1.18, and RMSE = 1.40) is similar to six well-established empirical methods. On the 17-drug test set, our model outperformed all compared empirical methodologies (N = 17, r = 0.94, MAE = 0.38, and RMSE = 0.52). The physical basis of our original GB/SA approach together with its predictive capacity, computational efficiency (1 to 2 s per molecule), and tridimensional molecular graphics capability lay the foundations for a promising predictor, the implicit log P method (iLOGP), to complement the portfolio of drug design tools developed and provided by the SIB Swiss Institute of Bioinformatics.
Resumo:
Osteoporosis is a serious worldwide epidemic. Increased risk of fractures is the hallmark of the disease and is associated with increased morbidity, mortality and economic burden. FRAX® is a web-based tool developed by the Sheffield WHO Collaborating Center team, that integrates clinical risk factors, femoral neck BMD, country specific mortality and fracture data and calculates the 10 year fracture probability in order to help health care professionals identify patients who need treatment. However, only 31 countries have a FRAX® calculator at the time paper was accepted for publication. In the absence of a FRAX® model for a particular country, it has been suggested to use a surrogate country for which the epidemiology of osteoporosis most closely approximates the index country. More specific recommendations for clinicians in these countries are not available. In North America, concerns have also been raised regarding the assumptions used to construct the US ethnic specific FRAX® calculators with respect to the correction factors applied to derive fracture probabilities in Blacks, Asians and Hispanics in comparison to Whites. In addition, questions were raised about calculating fracture risk in other ethnic groups e.g., Native Americans and First Canadians. In order to provide additional guidance to clinicians, a FRAX® International Task Force was formed to address specific questions raised by physicians in countries without FRAX® calculators and seeking to integrate FRAX® into their clinical practice. The main questions that the task force tried to answer were the following: The Task Force members conducted appropriate literature reviews and developed preliminary statements that were discussed and graded by a panel of experts at the ISCD-IOF joint conference. The statements approved by the panel of experts are discussed in the current paper.
Resumo:
The World Health Organization fracture risk assessment tool, FRAX(®), is an advance in clinical care that can assist in clinical decision-making. However, with increasing clinical utilization, numerous questions have arisen regarding how to best estimate fracture risk in an individual patient. Recognizing the need to assist clinicians in optimal use of FRAX(®), the International Osteoporosis Foundation (IOF) in conjunction with the International Society for Clinical Densitometry (ISCD) assembled an international panel of experts that ultimately developed joint Official Positions of the ISCD and IOF advising clinicians regarding FRAX(®) usage. As part of the process, the charge of the FRAX(®) Clinical Task Force was to review and synthesize data surrounding a number of recognized clinical risk factors including rheumatoid arthritis, smoking, alcohol, prior fracture, falls, bone turnover markers and glucocorticoid use. This synthesis was presented to the expert panel and constitutes the data on which the subsequent Official Positions are predicated. A summary of the Clinical Task Force composition and charge is presented here.
Resumo:
The HbpR protein is the sigma54-dependent transcription activator for 2-hydroxybiphenyl degradation in Pseudomonas azelaica. The ability of HbpR and XylR, which share 35% amino acid sequence identity, to cross-activate the PhbpC and Pu promoters was investigated by determining HbpR- or XylR-mediated luciferase expression and by DNA binding assays. XylR measurably activated the PhbpC promoter in the presence of the effector m-xylene, both in Escherichia coli and Pseudomonas putida. HbpR weakly stimulated the Pu promoter in E. coli but not in P. azelaica. Poor HbpR-dependent activation from Pu was caused by a weak binding to the operator region. To create promoters efficiently activated by both regulators, the HbpR binding sites on PhbpC were gradually changed into the XylR binding sites of Pu by site-directed mutagenesis. Inducible luciferase expression from mutated promoters was tested in E. coli on a two plasmid system, and from mono copy gene fusions in P. azelaica and P. putida. Some mutants were efficiently activated by both HbpR and XylR, showing that promoters can be created which are permissive for both regulators. Others achieved a higher XylR-dependent transcription than from Pu itself. Mutants were also obtained which displayed a tenfold lower uninduced expression level by HbpR than the wild-type PhbpC, while keeping the same maximal induction level. On the basis of these results, a dual-responsive bioreporter strain of P. azelaica was created, containing both XylR and HbpR, and activating luciferase expression from the same single promoter independently with m-xylene and 2-hydroxybiphenyl.
Resumo:
Purpose Carbon-13 magnetic resonance spectroscopy (13C-MRS) is challenging because of the inherent low sensitivity of 13C detection and the need for radiofrequency transmission at the 1H frequency while receiving the 13C signal, the latter requiring electrical decoupling of the 13C and 1H radiofrequency channels. In this study, we added traps to the 13C coil to construct a quadrature-13C/quadrature-1H surface coil, with sufficient isolation between channels to allow simultaneous operation at both frequencies without compromise in coil performance. Methods Isolation between channels was evaluated on the bench by measuring all coupling parameters. The quadrature mode of the quadrature-13C coil was assessed using in vitro 23Na gradient echo images. The signal-to-noise ratio (SNR) was measured on the glycogen and glucose resonances by 13C-MRS in vitro, compared with that obtained with a linear-13C/quadrature-1H coil, and validated by 13C-MRS in vivo in the human calf at 7T. Results Isolation between channels was better than â^'30 dB. The 23Na gradient echo images indicate a region where the field is strongly circularly polarized. The quadrature coil provided an SNR enhancement over a linear coil of 1.4, in vitro and in vivo. Conclusion It is feasible to construct a double-quadrature 13C-1H surface coil for proton decoupled sensitivity enhanced 13C-NMR spectroscopy in humans at 7T. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.