112 resultados para Fluid Dynamics -- Computer simulation
Resumo:
When sex determination in a species is predominantly genetic but environmentally reversible, exposure to (anthropogenic) changes in the environment can lead to shifts in a population's sex ratio. Such scenarios may be common in many fishes and amphibians, yet their ramifications remain largely unexplored. We used a simple model to study the (short-term) population consequences of environmental sex reversal (ESR). We examined the effects on sex ratios, sex chromosome frequencies, and population growth and persistence after exposure to environmental forces with feminizing or masculinizing tendencies. When environmental feminization was strong, X chromosomes were driven to extinction. Analogously, extinction of normally male-linked genetic factors (e.g., Y chromosomes) was caused by continuous environmental masculinization. Although moderate feminization was beneficial for population growth in the absence of large viability effects, our results suggest that the consequences of ESR are generally negative in terms of population size and the persistence of sex chromosomes. Extreme sex ratios resulting from high rates of ESR also reduced effective population sizes considerably. This may limit any evolutionary response to the deleterious effects of ESR. Our findings suggest that ESR changes population growth and sex ratios in some counter-intuitive ways and can change the predominant factor in sex determination from genetic to fully environmental, often within only a few tens of generations. Populations that lose genetic sex determination may quickly go extinct if the environmental forces that cause sex reversal cease.
Resumo:
Lesions of anatomical brain networks result in functional disturbances of brain systems and behavior which depend sensitively, often unpredictably, on the lesion site. The availability of whole-brain maps of structural connections within the human cerebrum and our increased understanding of the physiology and large-scale dynamics of cortical networks allow us to investigate the functional consequences of focal brain lesions in a computational model. We simulate the dynamic effects of lesions placed in different regions of the cerebral cortex by recording changes in the pattern of endogenous ("resting-state") neural activity. We find that lesions produce specific patterns of altered functional connectivity among distant regions of cortex, often affecting both cortical hemispheres. The magnitude of these dynamic effects depends on the lesion location and is partly predicted by structural network properties of the lesion site. In the model, lesions along the cortical midline and in the vicinity of the temporo-parietal junction result in large and widely distributed changes in functional connectivity, while lesions of primary sensory or motor regions remain more localized. The model suggests that dynamic lesion effects can be predicted on the basis of specific network measures of structural brain networks and that these effects may be related to known behavioral and cognitive consequences of brain lesions.
Resumo:
Résumé La théorie de l'autocatégorisation est une théorie de psychologie sociale qui porte sur la relation entre l'individu et le groupe. Elle explique le comportement de groupe par la conception de soi et des autres en tant que membres de catégories sociales, et par l'attribution aux individus des caractéristiques prototypiques de ces catégories. Il s'agit donc d'une théorie de l'individu qui est censée expliquer des phénomènes collectifs. Les situations dans lesquelles un grand nombre d'individus interagissent de manière non triviale génèrent typiquement des comportements collectifs complexes qui sont difficiles à prévoir sur la base des comportements individuels. La simulation informatique de tels systèmes est un moyen fiable d'explorer de manière systématique la dynamique du comportement collectif en fonction des spécifications individuelles. Dans cette thèse, nous présentons un modèle formel d'une partie de la théorie de l'autocatégorisation appelée principe du métacontraste. À partir de la distribution d'un ensemble d'individus sur une ou plusieurs dimensions comparatives, le modèle génère les catégories et les prototypes associés. Nous montrons que le modèle se comporte de manière cohérente par rapport à la théorie et est capable de répliquer des données expérimentales concernant divers phénomènes de groupe, dont par exemple la polarisation. De plus, il permet de décrire systématiquement les prédictions de la théorie dont il dérive, notamment dans des situations nouvelles. Au niveau collectif, plusieurs dynamiques peuvent être observées, dont la convergence vers le consensus, vers une fragmentation ou vers l'émergence d'attitudes extrêmes. Nous étudions également l'effet du réseau social sur la dynamique et montrons qu'à l'exception de la vitesse de convergence, qui augmente lorsque les distances moyennes du réseau diminuent, les types de convergences dépendent peu du réseau choisi. Nous constatons d'autre part que les individus qui se situent à la frontière des groupes (dans le réseau social ou spatialement) ont une influence déterminante sur l'issue de la dynamique. Le modèle peut par ailleurs être utilisé comme un algorithme de classification automatique. Il identifie des prototypes autour desquels sont construits des groupes. Les prototypes sont positionnés de sorte à accentuer les caractéristiques typiques des groupes, et ne sont pas forcément centraux. Enfin, si l'on considère l'ensemble des pixels d'une image comme des individus dans un espace de couleur tridimensionnel, le modèle fournit un filtre qui permet d'atténuer du bruit, d'aider à la détection d'objets et de simuler des biais de perception comme l'induction chromatique. Abstract Self-categorization theory is a social psychology theory dealing with the relation between the individual and the group. It explains group behaviour through self- and others' conception as members of social categories, and through the attribution of the proto-typical categories' characteristics to the individuals. Hence, it is a theory of the individual that intends to explain collective phenomena. Situations involving a large number of non-trivially interacting individuals typically generate complex collective behaviours, which are difficult to anticipate on the basis of individual behaviour. Computer simulation of such systems is a reliable way of systematically exploring the dynamics of the collective behaviour depending on individual specifications. In this thesis, we present a formal model of a part of self-categorization theory named metacontrast principle. Given the distribution of a set of individuals on one or several comparison dimensions, the model generates categories and their associated prototypes. We show that the model behaves coherently with respect to the theory and is able to replicate experimental data concerning various group phenomena, for example polarization. Moreover, it allows to systematically describe the predictions of the theory from which it is derived, specially in unencountered situations. At the collective level, several dynamics can be observed, among which convergence towards consensus, towards frag-mentation or towards the emergence of extreme attitudes. We also study the effect of the social network on the dynamics and show that, except for the convergence speed which raises as the mean distances on the network decrease, the observed convergence types do not depend much on the chosen network. We further note that individuals located at the border of the groups (whether in the social network or spatially) have a decisive influence on the dynamics' issue. In addition, the model can be used as an automatic classification algorithm. It identifies prototypes around which groups are built. Prototypes are positioned such as to accentuate groups' typical characteristics and are not necessarily central. Finally, if we consider the set of pixels of an image as individuals in a three-dimensional color space, the model provides a filter that allows to lessen noise, to help detecting objects and to simulate perception biases such as chromatic induction.
Resumo:
Disturbances affect metapopulations directly through reductions in population size and indirectly through habitat modification. We consider how metapopulation persistence is affected by different disturbance regimes and the way in which disturbances spread, when metapopulations are compact or elongated, using a stochastic spatially explicit model which includes metapopulation and habitat dynamics. We discover that the risk of population extinction is larger for spatially aggregated disturbances than for spatially random disturbances. By changing the spatial configuration of the patches in the system--leading to different proportions of edge and interior patches--we demonstrate that the probability of metapopulation extinction is smaller when the metapopulation is more compact. Both of these results become more pronounced when colonization connectivity decreases. Our results have important management implication as edge patches, which are invariably considered to be less important, may play an important role as disturbance refugia.
Resumo:
Gel electrophoresis allows one to separate knotted DNA (nicked circular) of equal length according to the knot type. At low electric fields, complex knots, being more compact, drift faster than simpler knots. Recent experiments have shown that the drift velocity dependence on the knot type is inverted when changing from low to high electric fields. We present a computer simulation on a lattice of a closed, knotted, charged DNA chain drifting in an external electric field in a topologically restricted medium. Using a Monte Carlo algorithm, the dependence of the electrophoretic migration of the DNA molecules on the knot type and on the electric field intensity is investigated. The results are in qualitative and quantitative agreement with electrophoretic experiments done under conditions of low and high electric fields.
Resumo:
Functional connectivity affects demography and gene dynamics in fragmented populations. Besides species-specific dispersal ability, the connectivity between local populations is affected by the landscape elements encountered during dispersal. Documenting these effects is thus a central issue for the conservation and management of fragmented populations. In this study, we compare the power and accuracy of three methods (partial correlations, regressions and Approximate Bayesian Computations) that use genetic distances to infer the effect of landscape upon dispersal. We use stochastic individual-based simulations of fragmented populations surrounded by landscape elements that differ in their permeability to dispersal. The power and accuracy of all three methods are good when there is a strong contrast between the permeability of different landscape elements. The power and accuracy can be further improved by restricting analyses to adjacent pairs of populations. Landscape elements that strongly impede dispersal are the easiest to identify. However, power and accuracy decrease drastically when landscape complexity increases and the contrast between the permeability of landscape elements decreases. We provide guidelines for future studies and underline the needs to evaluate or develop approaches that are more powerful.
Resumo:
Human-induced habitat fragmentation constitutes a major threat to biodiversity. Both genetic and demographic factors combine to drive small and isolated populations into extinction vortices. Nevertheless, the deleterious effects of inbreeding and drift load may depend on population structure, migration patterns, and mating systems and are difficult to predict in the absence of crossing experiments. We performed stochastic individual-based simulations aimed at predicting the effects of deleterious mutations on population fitness (offspring viability and median time to extinction) under a variety of settings (landscape configurations, migration models, and mating systems) on the basis of easy-to-collect demographic and genetic information. Pooling all simulations, a large part (70%) of variance in offspring viability was explained by a combination of genetic structure (F(ST)) and within-deme heterozygosity (H(S)). A similar part of variance in median time to extinction was explained by a combination of local population size (N) and heterozygosity (H(S)). In both cases the predictive power increased above 80% when information on mating systems was available. These results provide robust predictive models to evaluate the viability prospects of fragmented populations.
Resumo:
Accurate prediction of transcription factor binding sites is needed to unravel the function and regulation of genes discovered in genome sequencing projects. To evaluate current computer prediction tools, we have begun a systematic study of the sequence-specific DNA-binding of a transcription factor belonging to the CTF/NFI family. Using a systematic collection of rationally designed oligonucleotides combined with an in vitro DNA binding assay, we found that the sequence specificity of this protein cannot be represented by a simple consensus sequence or weight matrix. For instance, CTF/NFI uses a flexible DNA binding mode that allows for variations of the binding site length. From the experimental data, we derived a novel prediction method using a generalised profile as a binding site predictor. Experimental evaluation of the generalised profile indicated that it accurately predicts the binding affinity of the transcription factor to natural or synthetic DNA sequences. Furthermore, the in vitro measured binding affinities of a subset of oligonucleotides were found to correlate with their transcriptional activities in transfected cells. The combined computational-experimental approach exemplified in this work thus resulted in an accurate prediction method for CTF/NFI binding sites potentially functioning as regulatory regions in vivo.
Resumo:
We present a novel and straightforward method for estimating recent migration rates between discrete populations using multilocus genotype data. The approach builds upon a two-step sampling design, where individual genotypes are sampled before and after dispersal. We develop a model that estimates all pairwise backwards migration rates (m(ij), the probability that an individual sampled in population i is a migrant from population j) between a set of populations. The method is validated with simulated data and compared with the methods of BayesAss and Structure. First, we use data for an island model and then we consider more realistic data simulations for a metapopulation of the greater white-toothed shrew (Crocidura russula). We show that the precision and bias of estimates primarily depend upon the proportion of individuals sampled in each population. Weak sampling designs may particularly affect the quality of the coverage provided by 95% highest posterior density intervals. We further show that it is relatively insensitive to the number of loci sampled and the overall strength of genetic structure. The method can easily be extended and makes fewer assumptions about the underlying demographic and genetic processes than currently available methods. It allows backwards migration rates to be estimated across a wide range of realistic conditions.
Resumo:
Pharmacokinetic variability in drug levels represent for some drugs a major determinant of treatment success, since sub-therapeutic concentrations might lead to toxic reactions, treatment discontinuation or inefficacy. This is true for most antiretroviral drugs, which exhibit high inter-patient variability in their pharmacokinetics that has been partially explained by some genetic and non-genetic factors. The population pharmacokinetic approach represents a very useful tool for the description of the dose-concentration relationship, the quantification of variability in the target population of patients and the identification of influencing factors. It can thus be used to make predictions and dosage adjustment optimization based on Bayesian therapeutic drug monitoring (TDM). This approach has been used to characterize the pharmacokinetics of nevirapine (NVP) in 137 HIV-positive patients followed within the frame of a TDM program. Among tested covariates, body weight, co-administration of a cytochrome (CYP) 3A4 inducer or boosted atazanavir as well as elevated aspartate transaminases showed an effect on NVP elimination. In addition, genetic polymorphism in the CYP2B6 was associated with reduced NVP clearance. Altogether, these factors could explain 26% in NVP variability. Model-based simulations were used to compare the adequacy of different dosage regimens in relation to the therapeutic target associated with treatment efficacy. In conclusion, the population approach is very useful to characterize the pharmacokinetic profile of drugs in a population of interest. The quantification and the identification of the sources of variability is a rational approach to making optimal dosage decision for certain drugs administered chronically.
Resumo:
Despite the considerable evidence showing that dispersal between habitat patches is often asymmetric, most of the metapopulation models assume symmetric dispersal. In this paper, we develop a Monte Carlo simulation model to quantify the effect of asymmetric dispersal on metapopulation persistence. Our results suggest that metapopulation extinctions are more likely when dispersal is asymmetric. Metapopulation viability in systems with symmetric dispersal mirrors results from a mean field approximation, where the system persists if the expected per patch colonization probability exceeds the expected per patch local extinction rate. For asymmetric cases, the mean field approximation underestimates the number of patches necessary for maintaining population persistence. If we use a model assuming symmetric dispersal when dispersal is actually asymmetric, the estimation of metapopulation persistence is wrong in more than 50% of the cases. Metapopulation viability depends on patch connectivity in symmetric systems, whereas in the asymmetric case the number of patches is more important. These results have important implications for managing spatially structured populations, when asymmetric dispersal may occur. Future metapopulation models should account for asymmetric dispersal, while empirical work is needed to quantify the patterns and the consequences of asymmetric dispersal in natural metapopulations.
Resumo:
The aim of this computerized simulation model is to provide an estimate of the number of beds used by a population, taking into accounts important determining factors. These factors are demographic data of the deserved population, hospitalization rates, hospital case-mix and length of stay; these parameters can be taken either from observed data or from scenarii. As an example, the projected evolution of the number of beds in Canton Vaud for the period 1893-2010 is presented.
Resumo:
The fire ant Solenopsis invicta is a significant pest that was inadvertently introduced into the southern United States almost a century ago and more recently into California and other regions of the world. An assessment of genetic variation at a diverse set of molecular markers in 2144 fire ant colonies from 75 geographic sites worldwide revealed that at least nine separate introductions of S. invicta have occurred into newly invaded areas and that the main southern U.S. population is probably the source of all but one of these introductions. The sole exception involves a putative serial invasion from the southern United States to California to Taiwan. These results illustrate in stark fashion a severe negative consequence of an increasingly massive and interconnected global trade and travel system.
Resumo:
When decommissioning a nuclear facility it is important to be able to estimate activity levels of potentially radioactive samples and compare with clearance values defined by regulatory authorities. This paper presents a method of calibrating a clearance box monitor based on practical experimental measurements and Monte Carlo simulations. Adjusting the simulation for experimental data obtained using a simple point source permits the computation of absolute calibration factors for more complex geometries with an accuracy of a bit more than 20%. The uncertainty of the calibration factor can be improved to about 10% when the simulation is used relatively, in direct comparison with a measurement performed in the same geometry but with another nuclide. The simulation can also be used to validate the experimental calibration procedure when the sample is supposed to be homogeneous but the calibration factor is derived from a plate phantom. For more realistic geometries, like a small gravel dumpster, Monte Carlo simulation shows that the calibration factor obtained with a larger homogeneous phantom is correct within about 20%, if sample density is taken as the influencing parameter. Finally, simulation can be used to estimate the effect of a contamination hotspot. The research supporting this paper shows that activity could be largely underestimated in the event of a centrally-located hotspot and overestimated for a peripherally-located hotspot if the sample is assumed to be homogeneously contaminated. This demonstrates the usefulness of being able to complement experimental methods with Monte Carlo simulations in order to estimate calibration factors that cannot be directly measured because of a lack of available material or specific geometries.
Resumo:
Microsatellite loci mutate at an extremely high rate and are generally thought to evolve through a stepwise mutation model. Several differentiation statistics taking into account the particular mutation scheme of the microsatellite have been proposed. The most commonly used is R(ST) which is independent of the mutation rate under a generalized stepwise mutation model. F(ST) and R(ST) are commonly reported in the literature, but often differ widely. Here we compare their statistical performances using individual-based simulations of a finite island model. The simulations were run under different levels of gene flow, mutation rates, population number and sizes. In addition to the per locus statistical properties, we compare two ways of combining R(ST) over loci. Our simulations show that even under a strict stepwise mutation model, no statistic is best overall. All estimators suffer to different extents from large bias and variance. While R(ST) better reflects population differentiation in populations characterized by very low gene-exchange, F(ST) gives better estimates in cases of high levels of gene flow. The number of loci sampled (12, 24, or 96) has only a minor effect on the relative performance of the estimators under study. For all estimators there is a striking effect of the number of samples, with the differentiation estimates showing very odd distributions for two samples.