82 resultados para Filamentous organisms
Resumo:
OBJECTIVES: Manifestations of external ventricular drain (EVD) - associated infections overlap with those of the underlying neurosurgical conditions. We analyzed characteristics of EVD-associated infections. METHODS: We included patients aged ≥18 years with EVD-associated infections from 1997 to 2008, using modified CDC criteria for nosocomial infections. Hospital charts were reviewed retrospectively and the in-hospital outcome was evaluated. RESULTS: Forty-eight patients with EVD-associated infections were included (median age, 52 years, range 20-74 years). The median EVD-indwelling time was 7 days (range, 1-39 days) and EVD-associated infection occurred 6 days after insertion (range, 1-17 days). In 23% of patients, meningitis occurred 1-10 days after EVD removal. Fever >38 °C was present in 79% of patients, but Glasgow Coma Scale (GCS) scores were reduced in only 29%, and headache, vomiting and/or neck stiffness were present in only 31%. The median cerebrospinal fluid (CSF) leukocyte count was higher at onset of EVD-associated infection than at EVD insertion (175 × 10(6)/l versus 46 × 10(6)/l, p = 0.021), but other CSF parameters did not differ significantly. The most commonly implicated organisms were coagulase-negative staphylococci (63%) and Propionibacterium acnes (15%). CONCLUSIONS: Fever and increased CSF leukocytes should raise the suspicion of EVD-associated infection, which may occur up to 10 days after removal of EVD.
Resumo:
Fatty acid degradation in most organisms occurs primarily via the beta-oxidation cycle. In mammals, beta-oxidation occurs in both mitochondria and peroxisomes, whereas plants and most fungi harbor the beta-oxidation cycle only in the peroxisomes. Although several of the enzymes participating in this pathway in both organelles are similar, some distinct physiological roles have been uncovered. Recent advances in the structural elucidation of numerous mammalian and yeast enzymes involved in beta-oxidation have shed light on the basis of the substrate specificity for several of them. Of particular interest is the structural organization and function of the type 1 and 2 multifunctional enzyme (MFE-1 and MFE-2), two enzymes evolutionarily distant yet catalyzing the same overall enzymatic reactions but via opposite stereochemistry. New data on the physiological roles of the various enzymes participating in beta-oxidation have been gathered through the analysis of knockout mutants in plants, yeast and animals, as well as by the use of polyhydroxyalkanoate synthesis from beta-oxidation intermediates as a tool to study carbon flux through the pathway. In plants, both forward and reverse genetics performed on the model plant Arabidopsis thaliana have revealed novel roles for beta-oxidation in the germination process that is independent of the generation of carbohydrates for growth, as well as in embryo and flower development, and the generation of the phytohormone indole-3-acetic acid and the signal molecule jasmonic acid.
Resumo:
Life on earth is subject to the repeated change between day and night periods. All organisms that undergo these alterations have to anticipate consequently the adaptation of their physiology and possess an endogenous periodicity of about 24 hours called circadian rhythm from the Latin circa (about) and diem (day). At the molecular level, virtually all cells of an organism possess a molecular clock which drives rhythmic gene expression and output functions. Besides altered rhythmicity in constant conditions, impaired clock function causes pathophysiological conditions such as diabetes or hypertension. These data unveil a part of the mechanisms underlying the well-described epidemiology of shift work and highlight the function of clock-driven regulatory mechanisms. The post-translational modification of proteins by the ubiquitin polypeptide is a central mechanism to regulate their stability and activity and is capital for clock function. Similarly to the majority of biological processes, it is reversible. Deubiquitylation is carried out by a wide variety of about ninety deubiquitylating enzymes and their function remains poorly understood, especially in vivo. This class of proteolytic enzymes is parted into five families including the Ubiquitin-Specific Proteases (USP), which is the most important with about sixty members. Among them, the Ubiquitin-Specific Protease 2 (Usp2) gene encodes two protein isoforms, USP2-45 and USP2-69. The first is ubiquitously expressed under the control of the circadian clock and displays all features of core clock genes or its closest outputs effectors. Additionally, Usp2-45 was also found to be induced by the mineralocorticoid hormone aldosterone and thought to participate in Na+ reabsorption and blood pressure regulation by Epithelial Na+ Channel ENaC in the kidneys. During my thesis, I aimed to characterize the role of Usp2 in vivo with respect to these two areas, by taking advantage of a total constitutive knockout mouse model. In the first project I aimed to validate the role of USP2-45 in Na+ homeostasis and blood pressure regulation by the kidneys. I found no significant alterations of diurnal Na+ homeostasis and blood pressure in these mice, indicating that Usp2 does not play a substantial role in this process. In urine analyses, we found that our Usp2-KO mice are actually hypercalciuric. In a second project, I aimed to understand the causes of this phenotype. I found that the observed hypercalciuria results essentially from intestinal hyperabsorption. These data reveal a new role for Usp2 as an output effector of the circadian clock in dietary Ca2+ metabolism in the intestine.
Resumo:
Terminal heart failure can be the cause or the result of major dysfunctions of the organisms. Although, the outcome of the natural history is the same in both situations, it is of prime importance to differentiate the two, as only heart failure as the primary cause allows for successful mechanical circulatory support as bridge to transplantation or towards recovery. Various objective parameters allow for the establishment of the diagnosis of terminal heart failure despite optimal medical treatment. A cardiac index <2.0 l/min, and a mixed venous oxygen saturation <60%, in combination with progressive renal failure, should trigger a diagnostic work-up in order to identify cardiac defects that can be corrected or to list the patient for transplantation with/without mechanical circulatory support.
Resumo:
Environmental shifts and life-history changes may result in formerly adaptive traits becoming non-functional or maladaptive. In the absence of pleiotropy and other constraints, such traits may decay as a consequence of neutral mutation accumulation or selective processes, highlighting the importance of natural selection for adaptations. A suite of traits are expected to lose their adaptive function in asexual organisms derived from sexual ancestors, and the many independent transitions to asexuality allow for comparative studies of parallel trait maintenance versus decay. In addition, because certain traits, notably male-specific traits, are usually not exposed to selection under asexuality, their decay would have to occur as a consequence of drift. Selective processes could drive the decay of traits associated with costs, which may be the case for the majority of sexual traits expressed in females. We review the fate of male and female sexual traits in 93 animal lineages characterized by asexual reproduction, covering a broad taxon range including molluscs, arachnids, diplopods, crustaceans and eleven different hexapod orders. Many asexual lineages are still able occasionally to produce males. These asexually produced males are often largely or even fully functional, revealing that major developmental pathways can remain quiescent and functional over extended time periods. By contrast, for asexual females, there is a parallel and rapid decay of sexual traits, especially of traits related to mate attraction and location, as expected given the considerable costs often associated with the expression of these traits. The level of decay of female sexual traits, in addition to asexual females being unable to fertilize their eggs, would severely impede reversals to sexual reproduction, even in recently derived asexual lineages. More generally, the parallel maintenance versus decay of different trait types across diverse asexual lineages suggests that neutral traits display little or no decay even after extended periods under relaxed selection, while extensive decay for selected traits occurs extremely quickly. These patterns also highlight that adaptations can fix rapidly in natural populations of asexual organisms, in spite of their mode of reproduction.
Resumo:
The evolution of eusociality is one of the major evolutionary transitions of life on earth. For investigating the conditions and processes that are central to the origin of such integrated social organization, it is best to study organisms in which individuals have retained some flexibility in their reproductive strategies. Halictid bees are especially well suited as model organisms, because they show huge variation in social systems, both within and between species. In this thesis, I investigated female reproductive strategies in the primitively eusocial bee Halictus scabiosae, with a focus on the role of helpers, in order to get insight into the mechanisms governing the evolution and maintenance of eusociality. This species produces two broods per year. The females from the first brood can stay in the natal nest to help raise a second brood of males and gynes that become the next-generation foundresses in spring. We first compared the morphology of females from the two broods, as well as the nutrition they receive as larvae. Then we conducted a helper- removal experiment in the field to quantify the effects of the presence of helpers on colony survival and productivity. Finally, we reconstructed pedigree relationships of individuals using microsatellite markers in order to detect who reproduces in the nest and how much individuals drift between nests. We found that first brood females had a uniformly small size and low fat reserves, which may be caused by the restricted pollen and nectar provisions on which they develop. Colony survival and productivity was increased by the presence of a single helper, but the effect was small and mostly limited to small colonies. By inferring parentage within and across colonies, we could determine that females from the first brood rarely reproduce in their natal nests. However, foundresses are frequently replaced, and foundresses and females from the first brood occasionally move to and reproduce in foreign colonies. As a result, colonies often contain offspring from unrelated individuals, and the relatedness of females to the brood they rear is low. Overall, this thesis shows that the reproductive system of H. scabiosae is highly flexible. The production of helpers in the first brood is important for colony success and productivity, but there is a high colony failure rate and part of the first brood females drift and reproduce in foreign nests. Both foundresses and helpers appear to be constrained by harsh environmental conditions or social factors limiting reproduction and independent colony founding. - L'origine des insectes sociaux est un domaine fascinant pour la recherche. Pour comprendre les mécanismes et les conditions qui sont nécessaires pour l'évolution et le maintien de la vie en société, il est judicieux d'étudier des sociétés primitives d'insectes, où toutes les femelles ont conservé la capacité de se reproduire, même si leur rôle comportemental dans la colonie est d'aider sans se reproduire. Une des familles d'abeilles, les halictes, est idéale pour cette sorte de recherche, en raison de la grande variabilité dans leur comportement social. Dans cette thèse, j'ai étudié les stratégies reproductives des femelles de Halictus scabiosae pour mieux comprendre les mécanismes qui influencent l'évolution de la vie en société. Cette espèce produit deux cohortes de couvain par année. Les femelles du premier couvain restent souvent dans leur nid natal pour aider à élever le deuxième couvain, tandis que les femelles du deuxième couvain s'accouplent et hibernent pour devenir les nouvelles fondatrices au printemps suivant. Nous avons d'abord comparé la morphologie des femelles issues des deux couvains ainsi que leur nutrition au stade de larve. Puis, dans une expérience sur le terrain, nous avons quantifié l'apport d'une ouvrière pour la survie et la productivité de la colonie. Finalement, nous avons reconstruit des pedigrees en utilisant des marqueurs génétiques, pour savoir qui se reproduit dans la colonie et combien d'individus migrent entre colonies. Les résultats montrent que les femelles du premier couvain sont uniformément plus petites et plus maigres, ce qui indique que les fondatrices réduisent les provisions de nourriture pour leur premier couvain afin de les inciter à aider dans le nid au lieu de se reproduire indépendamment. Dans l'expérience sur le terrain, la survie et la productivité de la colonie augmentaient avec la présence d'une ouvrière additionnelle, mais l'effet était petit et limité aux petites colonies. Par la reconstruction de pedigrees, nous pouvions constater que les femelles du premier couvain pondent rarement dans leurs nids natals. Les fondatrices cependant sont souvent remplacées en cours de saison, et migrent fréquemment entre nids, tandis que les femelles du premier couvain pondent parfois des oeufs dans des nids étrangers. De ce fait, les colonies contiennent souvent des descendants d'individus étrangers, et la parenté génétique entre les femelles et le deuxième couvain est basse. Cette thèse démontre que le système reproductif de H. scabiosae est très flexible. La production d'ouvrières est importante pour la survie de la colonie et sa productivité, mais le taux d'échec est élevé et une partie des femelles du premier couvain migrent et pondent dans une colonie étrangère. Autant les fondatrices que les ouvrières semblent être contraintes par des conditions environnementales ou sociales qui limitent la reproduction et les nouvelles fondations de colonie. - Die Entstehung von sozialen Lebensformen ist eines der wichtigsten Entwicklungen in der Geschichte des Lebens. Um die Bedingungen oder Prozesse zu verstehen, welche bei der Entstehung und dem Erhalt von sozialen Merkmalen wichtig sind, sollte man Lebewesen untersuchen, welche je nach Umwelteinflüßen ihr soziales Verhalten flexibel ändern können. Furchenbienen (Halictidae) gehören dazu. Diese weisen nämlich ein breites Spektrum verschiedener sozialer Organisationsformen auf, oftmals sogar innerhalb der einzelnen Arten. In meiner Doktorarbeit befasste ich mich mit den Fortpflanzungsstrategien der Weibchen der Skabiosen-Furchenbiene Halictus scabiosae. Diese Art produziert zwei Brüten pro Jahr. Die Weibchen der ersten Brut bleiben dabei meist als Arbeiterinnen in ihrem Geburtsnest, wohingegen die Weibchen der zweiten Brut nach der Paarung überwintern, um im nächsten Frühling neue Kolonien zu gründen. In einem ersten Schritt verglichen wir die beiden Brüten bezüglich der Grösse und der Fettreserven der Weibchen sowie der Pollen-Nektar-Vorräte für die Larven. Dann bestimmten wir in einem Feldexperiment, wieviel eine zusätzliche Arbeiterin zum Überleben und zur Produktiviät der Kolonie beiträgt. Schliesslich ermittelten wir durch genetische Tests die Verwandtschaftsbeziehungen zwischen den Bienen, um herauszufinden, wer in den Kolonien tatsächlich die Eier legt und ob und wieviel die Bienen zwischen verschiedenen Nestern wandern. Wir stellten fest, dass die Weibchen von der ersten Brut einheitlich kleiner sind und weniger Fettreserven besitzen. Das weist daraufhin, dass die Nestgründerin die erste Brut unterernährt, um die Wahrscheinlichkeit zu erhöhen, dass diese Weibchen als Arbeiterinnen im Nest bleiben anstatt sich unabhängig fortzupflanzen. Schon eine einzelne zusätzliche Arbeiterin verbesserte die Überlebenschancen und Produktivität der Kolonie, der Effekt war allerdings klein und auf kleine Kolonien beschränkt. Die Verwandtschaftsanalysen zeigten, dass die Arbeiterinnen nur sehr selten ein Ei in ihr Geburtsnest legen. Erstaunlicherweise wanderten die Nestgründerinnen oft zwischen verschiedenen Nestern. Einige Weibchen der ersten Brut wanderten auch in ein fremdes Nest und produzierten dort Nachkommen. Diese Doktorarbeit zeigt, dass die Fortpflanzungsstrategien der Skabiosen-Furchenbiene tatsächlich sehr flexibel sind. Die Anwesenheit von Arbeiterinnen ist wichtig für das Überleben und die Produktivität der Kolonie. Die Misserfolgsraten bleiben jedoch hoch, und ein Teil der Weibchen der ersten Brut pflanzt sich in fremden Nestern fort. Sowohl die Nestgründerinnen als auch die Weibchen der ersten Brut scheinen durch Umweltsbedingungen oder durch soziale Faktoren in der Wahl ihrer Fortpflanzungs¬strategie eingeschränkt zu sein.
Resumo:
In many organisms, individuals behave more altruistically towards relatives than towards unrelated individuals. Here, we conducted a study to determine if the performance of Arabidopsis thaliana is influenced by whether individuals are in competition with kin or non-kin. We selected seven pairs of genetically distinct accessions that originated from local populations throughout Europe. We measured the biomass of one focal plant surrounded by six kin or non-kin neighbours in in vitro growth experiments and counted the number of siliques produced per pot by one focal plant surrounded by four kin or non-kin neighbours. The biomass and number of siliques of a focal plant were not affected by the relatedness of the neighbour. Depending on the accession, a plant performed better or worse in a pure stand than when surrounded by non-kin plants. In addition, whole-genome microarray analyses revealed that there were no genes differentially expressed between kin and non-kin conditions. In conclusion, our study does not provide any evidence for a differential response to kin vs non-kin in A. thaliana. Rather, the outcome of the interaction between kin and non-kin seems to depend on the strength of the competitive abilities of the accessions.
Resumo:
Background. Streptococcus gallolyticus is a causative agent of infective endocarditis associated with colon cancer. Genome sequence of strain UCN34 revealed the existence of 3 pilus loci (pil1, pil2, and pil3). Pili are long filamentous structures playing a key role as adhesive organelles in many pathogens. The pil1 locus encodes 2 LPXTG proteins (Gallo2178 and Gallo2179) and 1 sortase C (Gallo2177). Gallo2179 displaying a functional collagen-binding domain was referred to as the adhesin, whereas Gallo2178 was designated as the major pilin. Methods. S. gallolyticus UCN34, Pil1(+) and Pil1(-), expressing various levels of pil1, and recombinant Lactococcus lactis strains, constitutively expressing pil1, were studied. Polyclonal antibodies raised against the putative pilin subunits Gallo2178 and Gallo2179 were used in immunoblotting and immunogold electron microscopy. The role of pil1 was tested in a rat model of endocarditis. Results. We showed that the pil1 locus (gallo2179-78-77) forms an operon differentially expressed among S. gallolyticus strains. Short pilus appendages were identified both on the surface of S. gallolyticus UCN34 and recombinant L. lactis-expressing pil1. We demonstrated that Pil1 pilus is involved in binding to collagen, biofilm formation, and virulence in experimental endocarditis. Conclusions. This study identifies Pil1 as the first virulence factor characterized in S. gallolyticus.
Resumo:
BACKGROUND: Regulation of genes transferred to eukaryotic organisms is often limited by the lack of consistent expression levels in all transduced cells, which may result in part from epigenetic gene silencing effects. This reduces the efficacy of ligand-controlled gene switches designed for somatic gene transfers such as gene therapy. METHODS: A doxycycline-controlled transgene was stably introduced in human cells, and clones were screened for epigenetic silencing of the transgene. Various regulatory proteins were targeted to the silent transgene, to identify those that would mediate regulation by doxycycline. RESULTS: A doxycycline-controlled minimal promoter was found to be prone to gene silencing, which prevents activation by a fusion of the bacterial TetR DNA-binding domain with the VP16 activator. DNA modification studies indicated that the silenced transgene adopts a poorly accessible chromatin structure. Several cellular transcriptional activators were found to restore an accessible DNA structure when targeted to the silent transgene, and they cooperated with Tet-VP16 to mediate regulation by doxycycline. CONCLUSIONS: Reversal of the silencing of a tetracycline-regulated minimal promoter requires a chromatin-remodeling activity for subsequent promoter activation by the Tet-VP16 fusion protein. Thus, distinct regulatory elements may be combined to obtain long-term regulation and persistent expression of exogenous genes in eukaryotic cells.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are ancient asexually reproducing organisms that form symbioses with the majority of plant species, improving plant nutrition and promoting plant diversity. Little is known about the evolution or organization of the genomes of any eukaryotic symbiont or ancient asexual organism. Direct evidence shows that one AMF species is heterokaryotic; that is, containing populations of genetically different nuclei. It has been suggested, however, that the genetic variation passed from generation to generation in AMF is simply due to multiple chromosome sets (that is, high ploidy). Here we show that previously documented genetic variation in Pol-like sequences, which are passed from generation to generation, cannot be due to either high ploidy or repeated gene duplications. Our results provide the clearest evidence so far for substantial genetic differences among nuclei in AMF. We also show that even AMF with a very large nuclear DNA content are haploid. An underlying principle of evolutionary theory is that an individual passes on one or half of its genome to each of its progeny. The coexistence of a population of many genomes in AMF and their transfer to subsequent generations, therefore, has far-reaching consequences for understanding genome evolution.
Resumo:
Type 2 diabetes mellitus (T2DM) is a major disease affecting nearly 280 million people worldwide. Whilst the pathophysiological mechanisms leading to disease are poorly understood, dysfunction of the insulin-producing pancreatic beta-cells is key event for disease development. Monitoring the gene expression profiles of pancreatic beta-cells under several genetic or chemical perturbations has shed light on genes and pathways involved in T2DM. The EuroDia database has been established to build a unique collection of gene expression measurements performed on beta-cells of three organisms, namely human, mouse and rat. The Gene Expression Data Analysis Interface (GEDAI) has been developed to support this database. The quality of each dataset is assessed by a series of quality control procedures to detect putative hybridization outliers. The system integrates a web interface to several standard analysis functions from R/Bioconductor to identify differentially expressed genes and pathways. It also allows the combination of multiple experiments performed on different array platforms of the same technology. The design of this system enables each user to rapidly design a custom analysis pipeline and thus produce their own list of genes and pathways. Raw and normalized data can be downloaded for each experiment. The flexible engine of this database (GEDAI) is currently used to handle gene expression data from several laboratory-run projects dealing with different organisms and platforms. Database URL: http://eurodia.vital-it.ch.
Resumo:
We show how an ultrafast pump-pump excitation induces strong fluorescence depletion in biological samples, such as bacteria-containing droplets, in contrast with fluorescent interferents, such as polycyclic aromatic compounds, despite similar spectroscopic properties. Application to the optical remote discrimination of biotic versus non-biotic particles is proposed. Further improvement is required to allow the discrimination of one pathogenic among other non-pathogenic micro-organisms. This improved selectivity may be reached with optimal coherent control experiments, as discussed in the paper.
Resumo:
Many aspects of physiology and behavior in organisms from bacteria to man are subjected to circadian regulation. Indeed, the major function of the circadian clock consists in the adaptation of physiology to daily environmental change and the accompanying stresses such as exposition to UV-light and food-contained toxic compounds. In this way, most aspects of xenobiotic detoxification are subjected to circadian regulation. These phenomena are now considered as the molecular basis for the time-dependence of drug toxicities and efficacy. However, there is now evidences that these toxic compounds can, in turn, regulate circadian gene expression and thus influence circadian rhythms. As food seems to be the major regulator of peripheral clock, the possibility that food-contained toxic compounds participate in the entrainment of the clock will be discussed.
Resumo:
Urease is an important virulence factor for Helicobacter pylori and is critical for bacterial colonization of the human gastric mucosa. Specific inhibition of urease activity has been proposed as a possible strategy to fight this bacteria which infects billions of individual throughout the world and can lead to severe pathological conditions in a limited number of cases. We have selected peptides which specifically bind and inhibit H. pylori urease from libraries of random peptides displayed on filamentous phage in the context of pIII coat protein. Screening of a highly diverse 25-mer combinatorial library and two newly constructed random 6-mer peptide libraries on solid phase H. pylori urease holoenzyme allowed the identification of two peptides, 24-mer TFLPQPRCSALLRYLSEDGVIVPS and 6-mer YDFYWW that can bind and inhibit the activity of urease purified from H. pylori. These two peptides were chemically synthesized and their inhibition constants (Ki) were found to be 47 microM for the 24-mer and 30 microM for the 6-mer peptide. Both peptides specifically inhibited the activity of H. pylori urease but not that of Bacillus pasteurii.
Resumo:
Sex-dependent selection often leads to spectacularly different phenotypes in males and females. In species in which sexual dimorphism is not complete, it is unclear which benefits females and males derive from displaying a trait that is typical of the other sex. In barn owls (Tyto alba), females exhibit on average larger black eumelanic spots than males but members of the two sexes display this trait in the same range of possible values. In a 12-year study, we show that selection exerted on spot size directly or on genetically correlated traits strongly favoured females with large spots and weakly favoured males with small spots. Intense directional selection on females caused an increase in spot diameter in the population over the study period. This increase is due to a change in the autosomal genes underlying the expression of eumelanic spots but not of sex-linked genes. Female-like males produced more daughters than sons, while male-like females produced more sons than daughters when mated to a small-spotted male. These sex ratio biases appear adaptive because sons of male-like females and daughters of female-like males had above-average survival. This demonstrates that selection exerted against individuals displaying a trait that is typical of the other sex promoted the evolution of specific life history strategies that enhance their fitness. This may explain why in many organisms sexual dimorphism is often not complete.