64 resultados para Extinction Probability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene expression often cycles between active and inactive states in eukaryotes, yielding variable or noisy gene expression in the short-term, while slow epigenetic changes may lead to silencing or variegated expression. Understanding how cells control these effects will be of paramount importance to construct biological systems with predictable behaviours. Here we find that a human matrix attachment region (MAR) genetic element controls the stability and heritability of gene expression in cell populations. Mathematical modeling indicated that the MAR controls the probability of long-term transitions between active and inactive expression, thus reducing silencing effects and increasing the reactivation of silent genes. Single-cell short-terms assays revealed persistent expression and reduced expression noise in MAR-driven genes, while stochastic burst of expression occurred without this genetic element. The MAR thus confers a more deterministic behavior to an otherwise stochastic process, providing a means towards more reliable expression of engineered genetic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the first quantitative study of the Early Jurassic recovery of ammonoids after the end-Triassic mass extinction based on detailed U-Pb ID-TIMS (isotope dilution thermal ionization mass spectrometry) geochronology from ash bed zircons placed within a clear phylogenetical and biochronological framework at the subzonal and species level. This study was triggered by the discovery of a rich Peruvian succession of ammonites, deposited concomitantly with an unusually large number of ash beds. Two major phases of rediversification are observed during the Psiloceras spelae and Angulaticeras zones that correspond to positive peaks in the delta C-13(org) curve, providing a possible link between biodiversity and the global carbon cycle. In the case of the post-extinction recovery, the development of the earliest Hettangian ammonites occurs within the genus Psiloceras, which begins with the occurrence of P. spelae and then explodes into worldwide development of smooth psiloceratids of the Psiloceras planorbis group s.l. This rapid biodiversification likely occurred less than 100 ka after the end-Triassic crisis; the genus Psiloceras occupied all the possible ecological niches worldwide, from the Pacific deep waters to the NW European shallow deposits and also in some rare Tethyan occurrences like at Germig in Tibet. This global dispersion allowed the differentiation of the group in several major phyla, the Schlotheimiidae, Discamphiceratinae, Arietitidae and Lytocerataceae, which were the roots of all other Jurassic and Cretaceous ammonites. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New precise zircon U-Pb ages are proposed for the Triassic-Jurassic (Rhetian-Hettangian) and the Hettangian-Sinemurian boundaries, The ages were obtained by ID-TIMS dating of single chemical-abraded zircons from volcanic ash layers within the Pucara Group, Aramachay Formation in the Utcubamba valley, northern Peru. Ash layers situated between last and first occurrences of boundary-defining ammonites yielded Pb-206/U-238 ages of 201.58 +/- 0.17/0.28 Ma (95% c.l., uncertainties without/with decay constant errors, respectively) for the Triassic-Jurassic and of 199.53 +/- 0.19/0.29 Ma for the Hettangian-Sinemurian boundaries. The former is established on a tuff located 1 m above the last local occurrence of the topmost Triassic genus Choristoceras, and 5 m below the Hettangian genus Psiloceras. The latter sample was obtained from a tuff collected within the Badouxia canadensis beds. Our new ages document total duration of the Hettagian of no more than c. 2 m.y., which has fundamental implications for the interpretation and significance of the ammonite recovery after the topmost Triassic extinction. The U-Pb age is about 0.8 +/- 0.5% older than Ar-40-Ar-39 dates determined on flood basalts of the Central Atlantic Magmatic Province (CAMP). Given the widely accepted hypothesis that inaccuracies in the K-40 decay constants or physical constants create a similar bias between the two dating methods, our new U-Pb zircon age determination for the T/J boundary corroborates the hypothesis that the CAMP was emplaced at the same time and may be responsible for a major climatic turnover and mass extinction. The zircon Pb-206/U-238 age for the T/J boundary is marginally older than the North Mountain Basalt (Newark Supergroup, Nova Scotia, Canada), which has been dated at 201.27 +/- 0.06 Ma [Schoene et al., 2006. Geochim. Cosmochim. Acta 70, 426-445]. It will be important to look for older eruptions of the CAMP and date them precisely by U-Pb techniques while addressing all sources of systematic uncertainty to further test the hypothesis of volcanic induced climate change leading to extinction. Such high-precision, high-accuracy data will be instrumental for constraining the contemporaneity of geological events at a 100 kyr level. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study provides an organic carbon stable isotope (delta(13)C(org)) record calibrated with detailed ammonite biostratigraphy, following the end-Triassic biological crisis. Precise correlation between this crucial fossil group and the delta(13)C(org) record is key to understanding feedbacks between biological and environmental events following mass extinction. The latest Triassic and Hettangian delta(13)C(org) record shows several negative and positive excursions. The end-Triassic negative shift coinciding with the mass extinction interval is followed by a positive excursion in the earliest Hettangian Psiloceras spelae beds, which marks the onset of recovery in the marine ecosystem. This positive trend is interrupted by a second negative delta(13)C(org) excursion in the P. pacificum beds related to a minor ammonite extinction event. This pattern of the delta(13)C(org) curve culminates in the uppermost Hettangian Angulata Zone major positive excursion. This indicates that both the ecosystem and the carbon cycle remained in a state of perturbation for at least 2 Ma, although the recovery of some pelagic taxa already began at the base of Jurassic. The early and late Hettangian positive delta(13)C(org) excursions have been confused in several recent papers. Here, we show that during the Hettangian there are indeed two distinct positive delta(13)C(org) excursions. Phases of anoxia and further pulses of Central Atlantic Magmatic Province volcanism during the Hettangian might have inhibited the full recovery for that interval of time. The main Liasicus-Angulata organic positive CIE (carbon isotope excursion) during the Late Hettangian might be related to gradual decreasing of pCO(2) due to protracted high organic burial, and coincides with a second phase of recovery, as indicated by a pulse of ammonoid diversification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disturbances affect metapopulations directly through reductions in population size and indirectly through habitat modification. We consider how metapopulation persistence is affected by different disturbance regimes and the way in which disturbances spread, when metapopulations are compact or elongated, using a stochastic spatially explicit model which includes metapopulation and habitat dynamics. We discover that the risk of population extinction is larger for spatially aggregated disturbances than for spatially random disturbances. By changing the spatial configuration of the patches in the system--leading to different proportions of edge and interior patches--we demonstrate that the probability of metapopulation extinction is smaller when the metapopulation is more compact. Both of these results become more pronounced when colonization connectivity decreases. Our results have important management implication as edge patches, which are invariably considered to be less important, may play an important role as disturbance refugia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary Ecotones are sensitive to change because they contain high numbers of species living at the margin of their environmental tolerance. This is equally true of tree-lines, which are determined by attitudinal or latitudinal temperature gradients. In the current context of climate change, they are expected to undergo modifications in position, tree biomass and possibly species composition. Attitudinal and latitudinal tree-lines differ mainly in the steepness of the underlying temperature gradient: distances are larger at latitudinal tree-lines, which could have an impact on the ability of tree species to migrate in response to climate change. Aside from temperature, tree-lines are also affected on a more local level by pressure from human activities. These are also changing as a consequence of modifications in our societies and may interact with the effects of climate change. Forest dynamics models are often used for climate change simulations because of their mechanistic processes. The spatially-explicit model TreeMig was used as a base to develop a model specifically tuned for the northern European and Alpine tree-line ecotones. For the latter, a module for land-use change processes was also added. The temperature response parameters for the species in the model were first calibrated by means of tree-ring data from various species and sites at both tree-lines. This improved the growth response function in the model, but also lead to the conclusion that regeneration is probably more important than growth for controlling tree-line position and species' distributions. The second step was to implement the module for abandonment of agricultural land in the Alps, based on an existing spatial statistical model. The sensitivity of its most important variables was tested and the model's performance compared to other modelling approaches. The probability that agricultural land would be abandoned was strongly influenced by the distance from the nearest forest and the slope, bath of which are proxies for cultivation costs. When applied to a case study area, the resulting model, named TreeMig-LAb, gave the most realistic results. These were consistent with observed consequences of land-abandonment such as the expansion of the existing forest and closing up of gaps. This new model was then applied in two case study areas, one in the Swiss Alps and one in Finnish Lapland, under a variety of climate change scenarios. These were based on forecasts of temperature change over the next century by the IPCC and the HadCM3 climate model (ΔT: +1.3, +3.5 and +5.6 °C) and included a post-change stabilisation period of 300 years. The results showed radical disruptions at both tree-lines. With the most conservative climate change scenario, species' distributions simply shifted, but it took several centuries reach a new equilibrium. With the more extreme scenarios, some species disappeared from our study areas (e.g. Pinus cembra in the Alps) or dwindled to very low numbers, as they ran out of land into which they could migrate. The most striking result was the lag in the response of most species, independently from the climate change scenario or tree-line type considered. Finally, a statistical model of the effect of reindeer (Rangifer tarandus) browsing on the growth of Pinus sylvestris was developed, as a first step towards implementing human impacts at the boreal tree-line. The expected effect was an indirect one, as reindeer deplete the ground lichen cover, thought to protect the trees against adverse climate conditions. The model showed a small but significant effect of browsing, but as the link with the underlying climate variables was unclear and the model was not spatial, it was not usable as such. Developing the TreeMig-LAb model allowed to: a) establish a method for deriving species' parameters for the growth equation from tree-rings, b) highlight the importance of regeneration in determining tree-line position and species' distributions and c) improve the integration of social sciences into landscape modelling. Applying the model at the Alpine and northern European tree-lines under different climate change scenarios showed that with most forecasted levels of temperature increase, tree-lines would suffer major disruptions, with shifts in distributions and potential extinction of some tree-line species. However, these responses showed strong lags, so these effects would not become apparent before decades and could take centuries to stabilise. Résumé Les écotones son sensibles au changement en raison du nombre élevé d'espèces qui y vivent à la limite de leur tolérance environnementale. Ceci s'applique également aux limites des arbres définies par les gradients de température altitudinaux et latitudinaux. Dans le contexte actuel de changement climatique, on s'attend à ce qu'elles subissent des modifications de leur position, de la biomasse des arbres et éventuellement des essences qui les composent. Les limites altitudinales et latitudinales diffèrent essentiellement au niveau de la pente des gradients de température qui les sous-tendent les distance sont plus grandes pour les limites latitudinales, ce qui pourrait avoir un impact sur la capacité des espèces à migrer en réponse au changement climatique. En sus de la température, la limite des arbres est aussi influencée à un niveau plus local par les pressions dues aux activités humaines. Celles-ci sont aussi en mutation suite aux changements dans nos sociétés et peuvent interagir avec les effets du changement climatique. Les modèles de dynamique forestière sont souvent utilisés pour simuler les effets du changement climatique, car ils sont basés sur la modélisation de processus. Le modèle spatialement explicite TreeMig a été utilisé comme base pour développer un modèle spécialement adapté pour la limite des arbres en Europe du Nord et dans les Alpes. Pour cette dernière, un module servant à simuler des changements d'utilisation du sol a également été ajouté. Tout d'abord, les paramètres de la courbe de réponse à la température pour les espèces inclues dans le modèle ont été calibrées au moyen de données dendrochronologiques pour diverses espèces et divers sites des deux écotones. Ceci a permis d'améliorer la courbe de croissance du modèle, mais a également permis de conclure que la régénération est probablement plus déterminante que la croissance en ce qui concerne la position de la limite des arbres et la distribution des espèces. La seconde étape consistait à implémenter le module d'abandon du terrain agricole dans les Alpes, basé sur un modèle statistique spatial existant. La sensibilité des variables les plus importantes du modèle a été testée et la performance de ce dernier comparée à d'autres approches de modélisation. La probabilité qu'un terrain soit abandonné était fortement influencée par la distance à la forêt la plus proche et par la pente, qui sont tous deux des substituts pour les coûts liés à la mise en culture. Lors de l'application en situation réelle, le nouveau modèle, baptisé TreeMig-LAb, a donné les résultats les plus réalistes. Ceux-ci étaient comparables aux conséquences déjà observées de l'abandon de terrains agricoles, telles que l'expansion des forêts existantes et la fermeture des clairières. Ce nouveau modèle a ensuite été mis en application dans deux zones d'étude, l'une dans les Alpes suisses et l'autre en Laponie finlandaise, avec divers scénarios de changement climatique. Ces derniers étaient basés sur les prévisions de changement de température pour le siècle prochain établies par l'IPCC et le modèle climatique HadCM3 (ΔT: +1.3, +3.5 et +5.6 °C) et comprenaient une période de stabilisation post-changement climatique de 300 ans. Les résultats ont montré des perturbations majeures dans les deux types de limites de arbres. Avec le scénario de changement climatique le moins extrême, les distributions respectives des espèces ont subi un simple glissement, mais il a fallu plusieurs siècles pour qu'elles atteignent un nouvel équilibre. Avec les autres scénarios, certaines espèces ont disparu de la zone d'étude (p. ex. Pinus cembra dans les Alpes) ou ont vu leur population diminuer parce qu'il n'y avait plus assez de terrains disponibles dans lesquels elles puissent migrer. Le résultat le plus frappant a été le temps de latence dans la réponse de la plupart des espèces, indépendamment du scénario de changement climatique utilisé ou du type de limite des arbres. Finalement, un modèle statistique de l'effet de l'abroutissement par les rennes (Rangifer tarandus) sur la croissance de Pinus sylvestris a été développé, comme première étape en vue de l'implémentation des impacts humains sur la limite boréale des arbres. L'effet attendu était indirect, puisque les rennes réduisent la couverture de lichen sur le sol, dont on attend un effet protecteur contre les rigueurs climatiques. Le modèle a mis en évidence un effet modeste mais significatif, mais étant donné que le lien avec les variables climatiques sous jacentes était peu clair et que le modèle n'était pas appliqué dans l'espace, il n'était pas utilisable tel quel. Le développement du modèle TreeMig-LAb a permis : a) d'établir une méthode pour déduire les paramètres spécifiques de l'équation de croissance ä partir de données dendrochronologiques, b) de mettre en évidence l'importance de la régénération dans la position de la limite des arbres et la distribution des espèces et c) d'améliorer l'intégration des sciences sociales dans les modèles de paysage. L'application du modèle aux limites alpines et nord-européennes des arbres sous différents scénarios de changement climatique a montré qu'avec la plupart des niveaux d'augmentation de température prévus, la limite des arbres subirait des perturbations majeures, avec des glissements d'aires de répartition et l'extinction potentielle de certaines espèces. Cependant, ces réponses ont montré des temps de latence importants, si bien que ces effets ne seraient pas visibles avant des décennies et pourraient mettre plusieurs siècles à se stabiliser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present new geochemical and sedimentological data from marginal marine strata of Penarth Bay, south Wales (UK) to elucidate the origin of widespread but enigmatic concentrations of vertebrate hard parts (bonebeds) in marine successions of Rhaetian age (late Triassic). Sedimentological evidence shows that the phosphatic constituents of the bonebeds were subjected to intense phosphatization in shallow current-dominated settings and subsequently reworked and transported basinward by storms. Interbedded organic-rich strata deposited under quiescent and poorly oxygenated conditions record enhanced phosphorus regeneration from sedimentary organic matter into the water column and probably provided the main source of phosphate required for heavy bonebed clast phosphatization. The stratigraphically limited interval showing evidence for oxygen depletion and accelerated P-cycling coincides with a negative 4% organic carbon isotope excursion, which possibly reflects supra-regional changes in carbon cycling and clearly predates the 'initial isotope excursion' characterizing many Triassic-Jurassic boundary strata. our data indicate that Rhaetian bonebeds are the lithological signature of profound, climatically driven changes in carbon cycling and redox conditions and support the idea of a multi-pulsed environmental crisis at the end of the Triassic, possibly linked to successive episodes of igneous activity in the central Atlantic Magmatic Province.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A lot of research in cognition and decision making suffers from a lack of formalism. The quantum probability program could help to improve this situation, but we wonder whether it would provide even more added value if its presumed focus on outcome models were complemented by process models that are, ideally, informed by ecological analyses and integrated into cognitive architectures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clonally distributed inhibitory receptors negatively regulate natural killer (NK) cell function via specific interactions with allelic forms of major histocompatibility complex (MHC) class I molecules. In the mouse, the Ly-49 family of inhibitory receptors is found not only on NK cells but also on a minor (NK1.1+) T cell subset. Using Ly-49 transgenic mice, we show here that the development of NK1.1+ T cells, in contrast to NK or conventional T cells, is impaired when their Ly-49 receptors engage self-MHC class I molecules. Impaired NK1.1+ T cell development in transgenic mice is associated with a failure to select the appropriate CD1-reactive T cell receptor repertoire. In normal mice, NK1.1+ T cell maturation is accompanied by extinction of Ly-49 receptor expression. Collectively, our data imply that developmentally regulated extinction of inhibitory MHC-specific receptors is required for normal NK1.1+ T cell maturation and selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Odorant receptor (OR) genes constitute with 1200 members the largest gene family in the mouse genome. A mature olfactory sensory neuron (OSN) is thought to express just one OR gene, and from one allele. The cell bodies of OSNs that express a given OR gene display a mosaic pattern within a particular region of the main olfactory epithelium. The mechanisms and cis-acting DNA elements that regulate the expression of one OR gene per OSN - OR gene choice - remain poorly understood. Here, we describe a reporter assay to identify minimal promoters for OR genes in transgenic mice, which are produced by the conventional method of pronuclear injection of DNA. The promoter transgenes are devoid of an OR coding sequence, and instead drive expression of the axonal marker tau-β-galactosidase. For four mouse OR genes (M71, M72, MOR23, and P3) and one human OR gene (hM72), a mosaic, OSN-specific pattern of reporter expression can be obtained in transgenic mice with contiguous DNA segments of only ~300 bp that are centered around the transcription start site (TSS). The ~150bp region upstream of the TSS contains three conserved sequence motifs, including homeodomain (HD) binding sites. Such HD binding sites are also present in the H and P elements, DNA sequences that are known to strongly influence OR gene expression. When a 19mer encompassing a HD binding site from the P element is multimerized nine times and added upstream of a MOR23 minigene that contains the MOR23 coding region, we observe a dramatic increase in the number of transgene-expressing founders and lines and in the number of labeled OSNs. By contrast, a nine times multimerized 19mer with a mutant HD binding site does not have these effects. We hypothesize that HD binding sites in the H and P elements and in OR promoters modulate the probability of OR gene choice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative estimates of the range loss of mountain plants under climate change have so far mostly relied on static geographical projections of species' habitat shifts(1-3). Here, we use a hybrid model(4) that combines such projections with simulations of demography and seed dispersal to forecast the climate-driven spatio-temporal dynamics of 150 high-mountain plant species across the European Alps. This model predicts average range size reductions of 44-50% by the end of the twenty-first century, which is similar to projections from the most 'optimistic' static model (49%). However, the hybrid model also indicates that population dynamics will lag behind climatic trends and that an average of 40% of the range still occupied at the end of the twenty-first century will have become climatically unsuitable for the respective species, creating an extinction debt(5,6). Alarmingly, species endemic to the Alps seem to face the highest range losses. These results caution against optimistic conclusions from moderate range size reductions observed during the twenty-first century as they are likely to belie more severe longer-term effects of climate warming on mountain plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The end-Permian mass extinction greatly diminished marine diversity and brought about a whole-scale restructuring of marine ecosystems; these ecosystem changes also profoundly affected the sedimentary record. Data presented here, attained through facies analyses of strata deposited during the immediate aftermath of the end-Permian mass extinction (southern Turkey) and at the close of the Early Triassic (southwestern United States), in combination with a literature review, show that sedimentary systems were profoundly affected by: (1) a reduction in biotic diversity and abundance and (2) long-term environmental fluctuations that resulted from the end-Permian crisis. Lower Triassic strata display widespread microbialite and carbonate seafloor fan development and contain indicators of suppressed infaunal bioturbation such as flat-pebble conglomerates and wrinkle structures (facies considered unusual in post-Cambrian subtidal deposits). Our observations suggest that depositional systems, too, respond to biotic crises, and that certain facies may act as barometers of ecologic and environmental change independent of fossil assemblage analyses. Close investigation of facies changes during other critical times in Earth history may serve as an important tool in interpreting the ecology of metazoans and their environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Permo-Triassic crisis was a major turning point in geological history. Following the end-Guadalupian extinction phase, the Palaeozoic biota underwent a steady decline through the Lopingian (Late Permian), resulting in their decimation at the level that is adopted as the Permian-Triassic boundary (PTB). This trend coincided with the greatest Phanerozoic regression. The extinction at the end of the Guadalupian and that marking the end of the Permian are therefore related. The subsequent recovery of the biota occupied the whole of the Early Triassic. Several phases of perturbations in [delta]13Ccarb occurred through a similar period, from the late Wuchiapingian to the end of the Early Triassic. Therefore, the Permian-Triassic crisis was protracted, and spanned Late Permian and Early Triassic time. The extinction associated with the PTB occurred in two episodes, the main act with a prelude and the epilogue. The prelude commenced prior to beds 25 and 26 at Meishan and coincided with the end-Permian regression. The main act itself happened in beds 25 and 26 at Meishan. The epilogue occurred in the late Griesbachian and coincided with the second volcanogenic layer (bed 28) at Meishan. The temporal distribution of these episodes constrains the interpretation of mechanisms responsible for the greatest Phanerozoic mass extinction, particularly the significance of a postulated bolide impact that to our view may have occurred about 50,000[no-break space]Myr after the prelude. The prolonged and multi-phase nature of the Permo-Triassic crisis favours the mechanisms of the Earth's intrinsic evolution rather than extraterrestrial catastrophe. The most significant regression in the Phanerozoic, the palaeomagnetic disturbance of the Permo-Triassic Mixed Superchron, widespread extensive volcanism, and other events, may all be related, through deep-seated processes that occurred during the integration of Pangea. These combined processes could be responsible for the profound changes in marine, terrestrial and atmospheric environments that resulted in the end-Permian mass extinction. Bolide impact is possible but is neither an adequate nor a necessary explanation for these changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scientific challenge is to assess the role of Deccan volcanism in the Cretaceous-Tertiary boundary (KTB) mass extinction. Here we report on the stratigraphy and biologic effects of Deccan volcanism in eleven deep wells from the Krishna-Godavari (K-G) Basin, Andhra Pradesh, India. In these wells, two phases of Deccan volcanism record the world's largest and longest lava mega-flows interbedded in marine sediments in the K-G Basin about 1500 km from the main Deccan volcanic province. The main phase-2 eruptions (similar to 80% of total Deccan Traps) began in C29r and ended at or near the KTB, an interval that spans planktic foraminiferal zones CF1-CF2 and most of the nannofossil Micula prinsii zone, and is correlative with the rapid global warming and subsequent cooling near the end of the Maastrichtian. The mass extinction began in phase-2 preceding the first of four mega-flows. Planktic foraminifera suffered a 50% drop in species richness. Survivors suffered another 50% drop after the first mega-flow, leaving just 7 to 8 survivor species. No recovery occurred between the next three mega-flows and the mass extinction was complete with the last phase-2 mega-flow at the KTB. The mass extinction was likely the consequence of rapid and massive volcanic CO(2) and SO(2) gas emissions, leading to high continental weathering rates, global warming, cooling, acid rains, ocean acidification and a carbon crisis in the marine environment. Deccan volcanism phase-3 began in the early Danian near the C29R/C29n boundary correlative with the planktic foraminiferal zone P1a/P1b boundary and accounts for similar to 14% of the total volume of Deccan eruptions, including four of Earth's longest and largest mega-flows. No major faunal changes are observed in the intertrappeans of zone P1b, which suggests that environmental conditions remained tolerable, volcanic eruptions were less intense and/or separated by longer time intervals thus preventing runaway effects. Alternatively, early Danian assemblages evolved in adaptation to high-stress conditions in the aftermath of the mass extinction and therefore survived phase-3 volcanism. Full marine biotic recovery did not occur until after Deccan phase-3. These data suggest that the catastrophic effects of phase-2 Deccan volcanism upon the Cretaceous planktic foraminifera were a function of both the rapid and massive volcanic eruptions and the highly specialized faunal assemblages prone to extinction in a changing environment. Data from the K-G Basin indicates that Deccan phase-2 alone could have caused the KTB mass extinction and that impacts may have had secondary effects.